Inequality indices are quantitative scores that gauge the divergence of wealth distributions in human societies
from the “ground state” of pure communism. While inequality indices were devised for socioeconomic applications, they are effectively applicable in the context of general non-negative size distributions such as count,
length, area, volume, mass, energy, and duration. Inequality indices are commonly based on the notion of
Lorenz curves, which implicitly assume the existence of finite means. Consequently, Lorenz-based inequality
indices are excluded from the realm of infinite-mean size distributions. In this paper we present an inequality
index that is based on an altogether alternative Langevin approach. The Langevin-based inequality index is introduced, explored, and applied to a wide range of non-negative size distributions with both finite and infinite
means.
Iндекси нерiвностi є кiлькiсними показниками, якi вимiрюють вiдхилення розподiлу багатства в людських
суспiльствах вiд “основного стану ” чистого комунiзму. Хоча iндекси нерiвностi були розробленi для застосування в соцiоекономiцi, вони виявилися ефективно застосовними в контекстi загальних ненегативних
розподiлiв розмiрiв, таких як кiлькiсть, довжина, площа, об’єм, маса, енергiя та тривалiсть. Iндекси нерiвностi зазвичай базуються на поняттi кривих Лоренца, що неявно припускають iснування скiнчених
середнiх. Як наслiдок, Лоренц-базованi iндекси нерiвностi вилучаються з множини нескiнчених середнiх
вiд розподiлiв розмiрiв. В цiй статтi ми представляємо iндекс нерiвностi, який базується на загалом альтернативному пiдходi Ланжевена. Ланжевен-базованi iндекси нерiвностi вводяться, вивчаються i застосовуються до широкого дiапазону ненегативних розподiлiв розмiру як зi скiнченими, так i з нескiнченими
середнiми.