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Investigating inequality: a Langevin approach

I. Eliazar∗
Smart Device Innovation Science Team, New Devices Group, Intel Corporation, Yakum, Israel
Received November 26, 2016
Inequality indices are quantitative scores that gauge the divergence of wealth distributions in human societies
from the “ground state” of pure communism. While inequality indices were devised for socioeconomic appli-
cations, they are effectively applicable in the context of general non-negative size distributions such as count,
length, area, volume, mass, energy, and duration. Inequality indices are commonly based on the notion of
Lorenz curves, which implicitly assume the existence of finite means. Consequently, Lorenz-based inequality
indices are excluded from the realm of infinite-mean size distributions. In this paper we present an inequality
index that is based on an altogether alternative Langevin approach. The Langevin-based inequality index is in-
troduced, explored, and applied to a wide range of non-negative size distributions with both finite and infinite
means.
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1. Introduction

This paper is written in honor of the 60
th
birthday of Professor Yurij Holovatch. The scientific inter-

ests of Professor Holovatch span from statistical physics to econophysics and sociophysics. In this paper

we’ll try to weave these interests together via a topic that draws considerable attention among the afore-

mentioned physics audiences: inequality [1–6].
Following the pioneering work of Vilfredo Pareto on the distribution of wealth in human societies [7],

the study of socioeconomic inequality became a major topic in economics and in the social sciences, as
well as a major topic of wide public debate [8–26]. Scientists devised special metrics termed inequality
indices to gauge socioeconomic inequality [27–30], the most notable of which being the Gini index [31–34]
and the Pietra index [35–40]. Inequality indices measure the divergence of wealth distributions from the
“ground state” of pure communism, and score this divergence. From an abstract mathematical perspec-

tive inequality indices can be applied in the context of general distributions of non-negative sizes — e.g.,

count, length, area, volume, mass, energy, duration, etc. — and serve, in this general context, as gauges of

statistical heterogeneity [41, 42].

Inequality indices are based on the notion of Lorenz curves [43–47], which represent wealth distri-
butions — and, in general, distributions of non-negative sizes — in a universally calibrated statistical

method. More specifically, inequality indices are based either on geometric divergence [48, 49] or on en-

tropic divergence [50, 51], from the “ground state” of pure communism, in the space of Lorenz curves.

Lorenz curves implicitly require a finite mean of their input distributions. Consequently, inequality in-
dices are applicable only in the case of non-negative size distributions with finite means. However, non-

negative size distributions with infinite means are prevalent across the sciences and are often of prime
importance [52–61].

In this paper we propose a new “Langevin approach” to inequality. The approach is based on the

Langevin equation [62, 63], a foundational notion in statistical physics that stands at the core of diffusion
processes and stochastic dynamics [64, 65]. Following up on the “topography of chance” that emanates
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from the Langevin equation in the setting of U-shaped potential landscapes [66], we introduce and ex-

plore a novel scenario-based inequality index that is applicable for a wide range of non-negative size

distributions with both finite and infinite means.

In a sense this paper “closes a circle”. Indeed, in [41, 42] it was demonstrated how the socioeconomic

methods of Lorenz curves and inequality indices can be “imported” to the physical sciences, and serve

there to quantify the statistical heterogeneity of general non-negative size distributions with finitemeans.

This paper moves in the opposite direction, and demonstrates how a Langevin-based approach can ef-

fectively replace the Lorenz-based approach of gauging inequality. This is yet another example of the

importance of the trans-disciplinary flow of ideas between different fields of science.

The paper is organized as follows. We begin with a brief review of the Langevin equation and its

associated Gibbs density (section 2), followed by a brief review of the corresponding geometric Langevin

equation and its associated geometric Gibbs density (section 3). After describing the case of underlying U-

shaped potential landscapes (section 4), we introduce a scenario-based equality index (sections 5 and 6).

We then describe the general application of the scenario-based equality index as a gauge of inequality

(section 7), and conclude with illustrative examples of the application (section 8).

2. Gibbs density

A key pillar of statistical physics is the notion of entropy maximization: characterizing the most ran-
dom configurationwithin a class of configurations that is determined by a given set of constraints [67, 68].

Specifically, consider the class of probability density functions over the real line, φ (x) (−∞< x <∞), that
are subject to the following moment constraint:

∫ ∞
−∞V (x)φ (x)dx = v , where V (x) is an general moment

function, and where v is an admissible moment value. Within this class of densities the unique density
that maximizes the Boltzmann-Gibbs-Shannon entropy [69–71] is the following Gibbs density:

φ (x) = c exp

[
−1

τ
V (x)

]
, (1)

where c is a positive normalization constant, and where τ is a positive “temperature” parameter that is
set to meet the moment constraint.

Yet another key pillar of statistical physics is the Langevin equation: a stochastic differential equation
that describes motion on a potential landscape that is subject to randomwhite-noise fluctuations [62, 63].

Specifically, consider a potential landscape over the real line (−∞< x <∞) that is given by the function
V (x), set F (x) = −V ′ (x) to be the corresponding “force function”, and denote by X (t ) the real-valued
position of the motion at time t . The stochastic dynamics of the motion are governed by the following
Langevin equation:

Ẋ (t ) = F [X (t )]+σẆ (t ) , (2)

where σ is a positive “volatility” parameter, and where Ẇ (t ) is white noise [64, 65].1

There is a profound connection between these two seemingly unrelated pillars, the notion of entropy

maximization and the Langevin equation. Indeed, the stationary law of the motion whose stochastic dy-
namics are governed by the Langevin equation (2) is given by the Gibbs density of equation (1) with tem-

perature τ = σ2/2. Namely, consider the steady-state position of motion: X (∞) = limt→∞ X (t ), the limit
being in law. Then: the law of the random variable X (∞) is governed by the Gibbs density of equation (1)
with τ=σ2/2.

3. Geometric Gibbs density

The Langevin equation (2) describes additive evolution. In many processes, especially in economics
and finance, evolution is multiplicative rather than additive [72–76]. The transformation from additive
1
White noise Ẇ (t ) is a stochastic process that is characterized by the following pair of properties [64, 65]: (i) its integral over an

arbitrary time interval,
∫ b

a Ẇ (t )dt (a < b), is a random variable that is governed by a normal lawwithmean zero andwith variance
b −a; and (ii) its integrals over disjoint time intervals are independent random variables.

13001-2



Investigating inequality: a Langevin approach

evolution to multiplicative evolution is facilitated by exponentiation. Specifically, in the context of the

Langevin equation (2): consider X (t ) to be the log-scale position at time t , and shift to the position Y (t ) =
exp[X (t )]. Applying this exponential transformation, Ito’s formula [77, 78] implies that the stochastic
dynamics of the exponentiated motion are governed by the following geometric Langevin equation:

Ẏ (t )

Y (t )
=G [Y (t )]+σẆ (t ) , (3)

where the “geometric force function” is given byG(y) = τ+F [ln(y)] (0 < y <∞), with τ=σ2/2. Comparing
equations (2) and (3) it is indeed evident that the former describes additive evolution, whereas the latter

describes multiplicative evolution.

In turn, the stationary law of the motion whose stochastic dynamics are governed by the geometric
Langevin equation (3) is given by the following geometric Gibbs density:

ψ(y) = c exp

{
−1

τ
V

[
ln(y)

]} 1

y
(4)

(0 < y < ∞), with temperature τ = σ2/2. Namely, consider the steady-state position of the exponenti-
ated motion: Y (∞) = limt→∞ Y (t ), the limit being in law. Then: the law of the random variable Y (∞) is
governed by the geometric Gibbs density of equation (4) with τ=σ2/2.

4. Shapes

One of the most fundamental potential landscapes, in the context of the Langevin equation, is that of

a U-shaped “potential well” [66]: V (x) being a convex function with a unique global minimum. The corre-
sponding force function admits the following shape: F (x) is a continuous function that decreases mono-
tonously from a positive limit F (−∞) := limx→−∞ F (x) > 0 to a negative limit F (∞) := limx→∞ F (x) < 0.
In what follows we consider this U-shaped potential landscape to hold, and denote by F−1 (·) the inverse
of the corresponding monotonously decreasing force function.

The stationary Gibbs density φ (x) of the Langevin equation (2) admits the following unimodal shape:
it is monotonously increasing on the half-line −∞< x < F−1 (0), it attains its unique global maximum at
the point F−1 (0), and it is monotonously decreasing on the half-line F−1 (0) < x <∞. Hence, themode x∗
of the stationary Gibbs density φ (x) is the point at which the force function F (x) crosses the level zero:
x∗ = F−1 (0). The core of the Langevin equation (2) is the ordinary differential equation ẋ (t ) = F [x (t )].
The stationary solution of this ordinary differential equation, x (∞) = limt→∞ x (t ), is its fixed point —
i.e., the point at which the force function F (x) crosses the level zero: x (∞) = F−1 (0). Thus, we observe
that the mode of the stationary Gibbs density φ (x) coincides with the stationary solution of the ordinary
differential equation ẋ (t ) = F [x (t )], i.e.: x∗ = x (∞). We shall now argue that the transition from the
additive evolution of the Langevin equation (2) to the multiplicative evolution of the geometric Langevin

equation (3) breaks this coincidence.

If F (−∞) É τ, then the stationary geometric Gibbs density ψ(y) of the geometric Langevin equa-
tion (3) is monotonously decreasing on the positive half-line 0 < y <∞. On the other hand, if F (−∞) > τ,
then the stationary geometric Gibbs density ψ(y) admits the following unimodal shape: it is monoto-
nously increasing on the interval 0 < y < exp[F−1 (τ)], it attains its unique global maximum at the point
exp[F−1 (τ)], and it is monotonously decreasing on the half-line exp[F−1 (τ)] < y <∞. Hence, themode of
the stationary geometric Gibbs density ψ(y) is given by

y∗ =
 0, if F (−∞) É τ,

exp
[
F−1 (τ)

]
, if F (−∞) > τ.

(5)

The core of the geometric Langevin equation (3) is the ordinary differential equation ẏ (t ) =G[y (t )].
If F (∞) <−τ, then the stationary solution of this ordinary differential equation, y (∞) = limt→∞ y (t ), is
its fixed point — i.e., the point at which the geometric force function G(y) crosses the level zero: y (∞) =
G−1 (0); note that G−1 (0) = exp[F−1 (−τ)]. On the other hand, if F (∞) Ê −τ, then the stationary solution
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diverges: y (∞) =∞. Hence, the stationary solution of the ordinary differential equation ẏ (t ) =G[y (t )] is
given by

y (∞) =
 exp

[
F−1 (−τ)

]
, if F (∞) <−τ,

∞, if F (∞) Ê−τ.
(6)

It is evident from equations (5) and (6) that the mode of the stationary geometric Gibbs density ψ(y)
is always smaller than the stationary solution of the ordinary differential equation ẏ (t ) = G[y (t )], i.e.:
y∗ < y (∞). Thus, as claimed above, the transition from the additive evolution of the Langevin equation (2)
to the multiplicative evolution of the geometric Langevin equation (3) indeed breaks the coincidence of

the mode and the stationary solution: we shift from x∗ = x (∞) to y∗ < y (∞).

5. Equality: Langevin representation

An equality index E is a gauge of positive-valued random variables that scores their inherent equality,

i.e., their inherent statistical homogeneity [50, 51]. Equality indices take values in the unit interval, 0 É
E É 1, yield the maximal unit score only in the case of constant random variables, and are scale-invariant
(we shall elaborate on the scale-invariance property in section 7 below).

In the context of the Langevin equation (2) and of the geometric Langevin equation (3), the respective

steady-state random variables X (∞) and Y (∞) are constant only when no randomness is present. The
absence of randomness is attained by setting the volatility, and hence the temperature, to vanish: τ =
σ2/2 = 0. Using the notation of the previous section, zero temperature implies that X (∞) = x (∞) and
Y (∞) = exp[x (∞)]. Focusing on the geometric Langevin equation (3), the notation of the previous section
further implies that

0 É y∗ < exp
[
F−1 (0)

]< y (∞) É∞, (7)

where:

• y∗ is the mode of the stationary geometric Gibbs density ψ(y), and is given by equation (5).

• exp[F−1 (0)] is the constant value of the steady-state random variable Y (∞), attained at zero tem-
perature.

• y (∞) is the stationary solution of the ordinary differential equation ẏ (t ) =G[y (t )], and is given by
equation (6).

Equation (7) holds for any positive temperature, τ > 0. When the temperature vanishes, τ = 0, the
strict inequalities of equation (7) become equalities: y∗ = exp[F−1 (0)] = y (∞). Thus, we can use the di-
vergence of the three terms of equation (7) from each other in order to gauge the inherent equality of the

steady-state random variable Y (∞). Indeed, each of the three following ratios can serve as an equality
index:

• The “left-hand ratio”Rl := y∗/exp[F−1 (0)], which vanishes when F (−∞) É τ.

• The “right-hand ratio”Rr := exp[F−1 (0)]/y (∞), which vanishes when F (∞) Ê−τ.

• The “overall ratio”R := y∗/y (∞), which vanishes when either F (−∞) É τ or F (∞) Ê−τ.

We combine these three ratios together into a joint scenario-based equality index E that is presented

in table 1. Equations (5) and (6) imply the ratio values that are specified in table 1 for each scenario.

6. Equality: Density representation

In the previous section we introduced the scenario-based equality index E , and represented it in

terms of the underlying Langevin-equation structure: the force function F (x) and the temperature τ =
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Table 1. The scenario-based equality index E . The rows indicate whether the force-function limit

F (−∞) := limx→−∞ F (x) is greater than the temperature τ, or not. The columns indicate whether the
force-function limit F (∞) := limx→∞ F (x) is smaller than minus the temperature −τ, or not. The two
rows and the two columns determine four different scenarios, and for each scenario the equality index

E is specified: the ratioR, the ratioRl , the ratioRr , or zero.

F (∞) <−τ F (∞) Ê−τ
F (−∞) > τ R = exp

[
F−1 (τ)−F−1 (−τ)

]
Rl = exp

[
F−1 (τ)−F−1 (0)

]
F (−∞) É τ Rr = exp

[
F−1 (0)−F−1 (−τ)

]
0

σ2/2. This representation is applicable when the underlying Langevin-equation structure is known. How-
ever, if this underlying structure is unobservable, and only the stationary geometric Gibbs density ψ(y)
is observable, an alternative representation is required. To that end, we introduce the function

ϕ(y) = y
ψ′(y)

ψ(y)
(8)

(0 < y <∞), and note that in terms of the function ϕ(y) the Langevin force function is given by:

1

τ
F (x) = 1+ϕ[

exp(x)
]

(9)

(−∞< x <∞). Consequently, the Langevin-based representation of the scenario-based equality index E

—which was specified in table 1 — shifts to a density-based representation. Namely, table 2 specifies the

representation of the scenario-based equality index E in terms of the function ϕ(y) of equation (8).

Table 2. The scenario-based equality index E , represented in terms of the function ϕ(y) of equation (8).
The rows indicate whether the limitϕ (0) := limy→0ϕ(y) is positive, or not. The columns indicate whether
the limit ϕ (∞) := limy→∞ϕ(y) is smaller than −2, or not. The two rows and the two columns determine
the four different scenarios, and for each scenario the equality index E is specified: the ratioR, the ratio

Rl , the ratioRr , or zero.

ϕ (∞) <−2 ϕ (∞) Ê−2

ϕ (0) > 0 R = ϕ−1(0)
ϕ−1(−2)

Rl = ϕ−1(0)
ϕ−1(−1)

ϕ (0) É 0 Rr = ϕ−1(−1)
ϕ−1(−2)

0

7. Application

Table 2 facilitates the wide application of the scenario-based equality index E . Indeed, assume that

we are given a positive-valued random variable Y , with probability density function ψ(y) (0 < y <∞), to
which we want to apply the scenario-based equality index E . The first step is to check whether the under-

lying Langevin setting — with a U-shaped potential landscape — applies to the given random variable Y .
Namely: is the underlying force F (x) a continuous function that decreases monotonously from a positive
limit F (−∞) := limx→−∞ F (x) > 0 to a negative limit F (∞) := limx→∞ F (x) < 0? Equation (9) implies that
this question, in terms of the function ϕ(y) of equation (8), translates to the following question: is ϕ(y)
a continuous function that decreases monotonously from the limit ϕ (0) := limy→0ϕ(y) >−1 to the limit
ϕ (∞) := limy→∞ϕ(y) < −1? If the answer to the latter question is affirmative, then the scenario-based
equality index E is applicable indeed, and we may proceed to the second step: computing this index, via

the function ϕ(y) of equation (8), according to table 2.
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At the beginning of section 5 we noted that equality indices are required to be scale invariant. Equal-
ity indices were originally devised in order to gauge the socioeconomic equality of wealth distributions

in human societies. Evidently, an equality score should be invariant with respect to the specific currency

via which wealth is measured. Indeed, the same human society has the same degree of socioeconomic

equality — no matter in which currency the wealth of the society members is measured. In the context

of wealth distributions, the random variable Y represents the wealth of a randomly sampled society

member, and a change of currency is manifested by the following scale transformation: Y → cY , where
c is a positive constant. In turn, equality indices should be invariant with respect to this scale transfor-
mation. The scenario-based equality index E indeed satisfies the scale-invariance property: table 2 that

corresponds to the scaled random variable cY is identical to table 2 that corresponds to the random

variable Y .
Another transformation we address is reciprocation: Y → 1/Y . On the log-scale, X = ln(Y ), reciproca-

tion manifests mirroring: X →−X . Reciprocation switches between the roles of the small “poor” values
and the large “rich” values. The effect of reciprocation on the scenario-based equality index E is rather

“elegant”: table 2 that corresponds to the reciprocated random variable 1/Y is given by the transposition
of table 2 that corresponds to the random variable Y .
Yet another transformation we address is the power transformation: Y → Y p

, where p is a positive
power. The power transformation is prevalent across the sciences, and the scenario-based equality index

E that corresponds to the power random variable Y p
is presented in table 3. Note that for the power

p = 1 table 3 indeed yields back table 2.

Table 3. The scenario-based equality index E of the power random variable Y p
, represented in terms of

the functionϕ(y) of equation (8). The rows indicate whether the limitϕ (0) := limy→0ϕ(y) is greater than
p − 1, or not. The columns indicate whether the limit ϕ (∞) := limy→∞ϕ(y) is smaller than −p − 1, or
not. The two rows and the two columns determine the four different scenarios, and for each scenario the

equality index E is specified: the ratioR, the ratioRl , the ratioRr , or zero.

ϕ (∞) <−p −1 ϕ (∞) Ê−p −1

ϕ (0) > p −1 R =
[
ϕ−1(p−1)
ϕ−1(−p−1)

]p
Rl =

[
ϕ−1(p−1)
ϕ−1(−1)

]p

ϕ (0) É p −1 Rr =
[

ϕ−1(−1)
ϕ−1(−p−1)

]p
0

In sections 5 and 6, as well as in this section, we focused on the notion of equality. In fact, as noted
in the introduction, it is more common to address inequality rather than equality. An inequality index I

is a gauge of positive-valued random variables that scores their inherent inequality, i.e., their inherent

statistical heterogeneity [27–30]. Inequality indices take values in the unit interval, 0 É I É 1, yield the
minimal zero score only in the case of constant random variables, and are scale-invariant (as described

above). The shift between gauging equality and inequality is straightforward. Indeed, every equality in-

dex E has a coupled inequality index I (and vice-versa), and the coupling is given by: E +I = 1. Hence,
all the results regarding the scenario-based equality index E can be shifted to the coupled scenario-based

inequality index, I = 1−E .

8. Examples

To demonstrate the application of the scenario-based equality index E , we present in this section four

illustrative examples. In all the examples we are given a positive-valued random variable Y with prob-
ability density function ψ(y) (0 < y <∞). In all the densities, the parameter c denotes a normalization
constant, and in the densities of examples 2–4 the parameters α and β denote positive exponents.

Example 1

ψ(y) = c
1

y
exp

{
−

[
ln(y)−m

]2

2v

}
. (10)
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This density characterizes the lognormal law with a real log-scale mean m and a positive log-scale vari-

ance v [79–83]. Applying table 2 we obtain that

E =R = exp(−2v) . (11)

Namely, in this example only the scenario E =R takes place.

Example 2
ψ(y) = c exp

(−yα
)

yβ−1. (12)

This density generalizes the gamma law (α = 1) [84] and the Weibull extreme-value law (α = β) [85–88].

Applying table 2 we obtain that

E =


R =

(
β−1
β+1

)1/α
, if β> 1,

Rr =
(

β
β+1

)1/α
, if βÉ 1.

(13)

Namely, in this example only the scenarios E =R and E =Rr take place.

Example 3
ψ(y) = c exp

(−y−α)
y−β−1 . (14)

This density generalizes the inverse-gamma law (α= 1) [89–91] and the Fréchet extreme-value law (α=β)
[92–94]. Applying table 2 we obtain that

E =


R =

(
β−1
β+1

)1/α
, if β> 1,

Rl =
(

β
β+1

)1/α
, if βÉ 1.

(15)

Namely, in this example only the scenarios E =R and E =Rl take place.
Example 4

ψ(y) = c
yα−1(

1+ y
)α+β . (16)

This density characterizes the beta-prime law, also known as the Fisher-Snedecor law [95–97]. The scena-
rio-based equality index E of this law is given in table 4.

Table 4. The scenario-based equality index E corresponding to the beta-prime density of equation (16).

The rows indicate whether the exponent α is greater than 1, or not. The columns indicate whether the
exponent β is greater than 1, or not. The two rows and the two columns determine the four different
scenarios, and for each scenario the equality index E is specified: the ratioR, the ratioRl , the ratioRr ,

or zero.

β> 1 βÉ 1

α> 1 R = α−1
α+1

β−1
β+1 Rl = α−1

α
β
β+1

αÉ 1 Rr = α
α+1

β−1
β 0

Several remarks regarding examples 2–4. First, the similarity between examples 2 and 3 is not coinci-

dental: indeed, the random variables of these examples are related by reciprocation, Y → 1/Y , and hence
the “transposition relation” of their respective scenario-based equality indices. Second, examples 2 and

3 can be obtained via the power transformation Y → Y 1/α
where: the “original” random variable Y is

governed, respectively, by a gamma law with density ψ(y) = c exp(−y)yβ/α−1
, and by an inverse-gamma
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law with density ψ(y) = c exp(−1/y)y−β/α−1
. Third, note that in the case of example 4 with identical

exponents, α=β, only the scenarios E =R and E = 0 take place.
A concluding note: this paper presented a novel Langevin-based method of scoring the statistical het-

erogeneity of a wide range of non-negative size distributions with both finite and infinite means — be

they count, length, area, volume, mass, energy, duration, etc.; as this paper is dedicated to the 60
th
birth-

day of Professor Yurij Holovatch, his students are most welcome to apply this method in the analysis of

real-world data from the scientific fields of interest of Professor Holovatch — statistical physics, econo-

physics, and sociophysics — as well as from other fields of science.
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Дослiджуючи нерiвностi: пiдхiд Ланжевена

I. Елiазар
Наукова команда в галузi iнновацiй розумних пристроїв, Група з розробки нових пристроїв, Корпорацiя
Iнтел, Якум, Iзраїль
Iндекси нерiвностi є кiлькiсними показниками, якi вимiрюють вiдхилення розподiлу багатства в людських
суспiльствах вiд “основного стану ” чистого комунiзму. Хоча iндекси нерiвностi були розробленi для засто-
сування в соцiоекономiцi, вони виявилися ефективно застосовними в контекстi загальних ненегативних
розподiлiв розмiрiв, таких як кiлькiсть, довжина, площа, об’єм, маса, енергiя та тривалiсть. Iндекси не-
рiвностi зазвичай базуються на поняттi кривих Лоренца, що неявно припускають iснування скiнчених
середнiх. Як наслiдок, Лоренц-базованi iндекси нерiвностi вилучаються з множини нескiнчених середнiх
вiд розподiлiв розмiрiв. В цiй статтi ми представляємо iндекс нерiвностi, який базується на загалом аль-
тернативному пiдходi Ланжевена. Ланжевен-базованi iндекси нерiвностi вводяться, вивчаються i засто-
совуються до широкого дiапазону ненегативних розподiлiв розмiру як зi скiнченими, так i з нескiнченими
середнiми.
Ключовi слова: iндекси нерiвностi, кривi Лоренца, рiвняння Ланжевена, густина Гiббса, iндекс

сценарiй-базованої рiвностi
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