Показано, что для NP-полных задач трудоемким является даже вычисление шара устойчивости радиуса 1 оптимального решения (т.е. при P ≠ NP для этого не существует полиномиального алгоритма). При использовании жадных алгоритмов для задачи о покрытии множествами (задачи о ранце) при радиусе устойчивости r = O(1) существуют полиномиальные алгоритмы вычисления шара устойчивости радиуса r lnm-приближенного решения (1-приближенного решения).
Показано, що для NP-повних задач трудомістким є навіть обчислення кулі стійкості радіуса 1 оптимального розв’язку (тобто при P ≠ NP для цього розв’язку не існує поліноміального алгоритму). При використанні жадібних алгоритмів для задачі про покриття множинами (задачі про рюкзак) при радіусі стійкості r = O(1) існують поліноміальні алгоритми обчислення кулі стійкості радіуса r ln m-наближеного розв’язку (1-наближеного розв’язку).
The authors show that even calculating the stability ball of radius 1 of the optimal solution is cumbersome for NP-hard problems (i.e., a polynomial algorithm does not exist unless P ≠ NP ). When greedy algorithms are used for set covering problem (knapsack problem) for stability radius r =O(1 ), polynomial algorithms of calculating the stability ball of radius r of ln m-approximate solution (1-àpproximate solution) exist.