Анотація:
Для вполне интегрируемой системы с гремя степенями свободы, описывающей движение твердого гола в двойном си-новом иоле, подчиненного условиям типа Ковалевской (А = В = 2С. центры оснащенности лежат в экваториальной плоскости эллипсоида инерции), найдено множество критических точек интегрального отображения, порожденного гремя интегралами в инволюции. Оно состоит из инвариантных подмножеств, на которых индуцированная динамическая система почти всюду гамильтонова с двумя степенями свободы. Критическому множеству сопоставлен его образ - бифуркационная диаграмма в пространстве консгант первых интегралов, которая лежит в объединении грех поверхностей. Две из них заданы явными уравнениями, а последняя - параметрическими, в которых роль параметров играю! постоянная одного из общих интегралов и кратный корень многочлена, обобщающего резольвенту Эйлера второго многочлена Ковалевской. Проведена аналогия с классами Аппельрота в задаче о движении волчка Ковалевской виоле силы тяжести.