Bosenko, T.; Kadets, V.
(Журнал математической физики, анализа, геометрии, 2010)
An operator G: X → Y is said to be a Daugavet center if ||G + T|| = ||G|| + ||T|| for every rank-1 operator T: X → Y . The main result of the paper is: if G: X →! Y is a Daugavet center, Y is a subspace of a Banach space ...