Досліджено динамічну модель Брюселятора з часовими дробовими похідними. Аналітично проведено спектральний аналіз і показано можливість реалізації різних типів біфуркації, включаючи новий тип комплексної біфуркації, для цієї моделі. За допомогою комп'ютерного моделювання підтверджено результати лінійної теорії і продемонстровано особливості різного типу біфуркацій. Показано, що така система може бути нестійкою в широкому діапазоні зміни порядку дробових похідних. Виявлено, що внаслідок нестійкості в системі можуть виникати якісно різні типи коливних розв'язків.
Исследована динамическая модель Брюсселятора с временными дробными производными. Аналитически проведен спектральный анализ и показана возможность реализации разных типов бифуркации, включая новый тип комплексной бифуркации, для этой модели. С помощью компьютерного моделирования подтверждены результаты линейной теории и продемонстрированы особенности различного типа бифуркаций. Показано, что такая система может быть неустойчивой в широком диапазоне изменения порядка дробных производных. Обнаружено, что в результате этой неустойчивости в системе могут возникать качественно различные типы колебательных решений.
We investigate a Brusselator dynamical system with time fractional derivatives. Spectral analysis is fulfilled analytically for any values of derivative orders. It is shown that such a system could be unstable in wide interval of system parameters. Different types of oscillations appear as a result of this instability. Computer simulation of the typical oscillations demonstrating the observed effects are performed.