С помощью метода Ito Y. и Tanimoto K. [7] Copeland'м было показано в [6], что уравнение "пологих склонов" может быть преобразовано в систему двух уравнений первого порядка гиперболического типа, что дает возможность значительно увеличить расчетную область и принять во внимание отраженную волну при моделировании распространения волн в зоне шельфа с портовыми сооружениями. Обобщение метода Ito Y. и Tanimoto K. для уравнения "пологих склонов" с учетом медленно изменяющихся течений, представленное в настоящей работе, приводит к более полной системе уравнений гиперболического типа, включающей систему уравнений [6]. В случае глубокой воды проведено сравнение численного решения полученной системы для высот гармонических волн, распространяющихся по течению и против течения, с аналитическим решением [9]. Кроме того, полученная система уравнений протестирована на экспериментах Thomas'а [16] для постоянной глубины и эксперименте Sakai [18] для переменной глубины. В двумерном случае показаны результаты численного моделирования распространения волн в заливе с впадающим в него устьем реки.
За допомогою метода Ito Y. i Tanimoto K. [7] Copeland'м було показано в [6], що рiвняння "положистих схилiв" може бути перетворено на систему двох рiвнянь першого порядку гiперболичного типу, що дає можливiсть значно збiльшити область розрахунку i взяти до уваги вiдображену хвилю за умов моделювання портових споруд. Узагальнення метода Ito Y. i
Tanimoto K. для рiвнянь "положистих схилiв" за наявностi повiльно змiнюваних течiй, шо наведено в цiй роботi, призводить до бiльш повної системи рiвнянь гiперболичного типу, яка мiстить систему рiнянь [6]. У випадку глибокої води проведено порiняння чисельного розв`язку одержаної системи для висот гармонiчних хвиль, що розповсюджуються за течiєю та проти течiї, з аналiтичним розв'язком [9]. Крiм того, отримана система рiвнянь тестована на експериментах Thomas'а [16] для однорiдної глибини та експериментi Sakai [18] для змiнної глибини. У двомiрному випадку наведенi результати чисельного моделювання розповсюдження хвиль у затоцi з гирлом рiчки, що впадає у затоку.
In [6] Copeland expressed by Ito Y. and Tanimoto K. method [7] the "mild -slope" equation in the form of a pair of first-order equations of a hyperbolic type. It resulted in the possibility to enlarge considerably the numerical domain and take into account the reflected wave for modeling wave transport in a shelf zone with sea harbour systems. Ito and Tanimoto method generalization presented in this paper for "mild-slope" equation with slowly variable currents results in more complete system of the hyperbolic type including the system [6]. The comparison of the wave heights in the case of the deep water has been performed for numerical results of the obtained system and analytical result [9] for waves propagating along currents and in opposite direction. The last system has been tested by Thomas experiment [16] for constant depth and by Sakai experiment [18] for ununiform depth. In addition the results of the numerical modeling have been shown for the waves propagating in a bay with river mouth flowing into this bay.