Анотація:
The rings considered in this article are nonzero commutative with identity which are not fields. Let R be a ring. We denote the collection of all proper ideals of R by I(R) and the collection I(R)\{(0)} by I(R)*. Recall that the intersection graph of ideals of R, denoted by G(R), is an undirected graph whose vertex set is I(R)* and distinct vertices I, J are adjacent if and only if I ∩ J ≠ (0). In this article, we consider a subgraph of G(R), denoted by H(R), whose vertex set is I(R)* and distinct vertices I, J are adjacent in H(R) if and only if IJ ≠ (0). The purpose of this article is to characterize rings R with at least two maximal ideals such that H(R) is planar.