Показати простий запис статті
dc.contributor.author |
Vadhel, P. |
|
dc.contributor.author |
Visweswaran, S. |
|
dc.date.accessioned |
2023-02-26T12:36:01Z |
|
dc.date.available |
2023-02-26T12:36:01Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case / P. Vadhel, S. Visweswaran // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 1. — С. 130–143. — Бібліогр.: 19 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC: 13A15, 05C25. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/188380 |
|
dc.description.abstract |
The rings considered in this article are nonzero commutative with identity which are not fields. Let R be a ring. We denote the collection of all proper ideals of R by I(R) and the collection I(R)\{(0)} by I(R)*. Recall that the intersection graph of ideals of R, denoted by G(R), is an undirected graph whose vertex set is I(R)* and distinct vertices I, J are adjacent if and only if I ∩ J ≠ (0). In this article, we consider a subgraph of G(R), denoted by H(R), whose vertex set is I(R)* and distinct vertices I, J are adjacent in H(R) if and only if IJ ≠ (0). The purpose of this article is to characterize rings R with at least two maximal ideals such that H(R) is planar. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті