При исследовании полиномиальных систем прямым методом Ляпунова центральной является проблема оценки изменения вспомогательной функции вдоль решений рассматриваемых уравнений. В настоящей работе на основе псевдо-линейного представления нелинейного интегрального неравенства получены новые границы изменения вспомогательной функции Ляпунова и приведены приложения при исследовании различных типов устойчивости движения.
Для поліноміальних систем рівнянь збуреного руху запропонована нова оцінка функції Ляпунова вздовж розв'язків розглядуваної системи рівнянь. На основі отриманих оцінок встановлено умови стійкість руху за Ляпуновим, практичної стійкості та стійкості на скінченному інтервалі часу при великих початкових збуреннях.
For the polynomial systems of perturbed motion equations, a new estimate of the Lyapunov function along the solutions of the system under consideration equations is proposed. Basing on the obtained results, the conditions for the Lyapunov stability, practical stability and stability on a finite–time interval for the large initial disturbances are established.