Продовжується вивчення оборотних елементів в асоціатах, тобто в (n+1)-арних групоїдах, які є (і,j)-асоціативними для всіх і=j(mods), де s— дільник числа n. При s=1 довільний асоціат є напівгрупою. Встановлено два нових критерії оборотності елементів, чим узагальнено раніше одержані результати, наведено наслідки для (n+1)-груп і поліагруп, тобто квазігрупових асоціатів.
We continue the investigation of invertible elements in associates, i.e., in (n + 1)-ary groupoids that are (i, j)-associative for all i ≡ j (mod s), where s is a divisor of a number n. For s = 1, an arbitrary associate is a semigroup. We establish two new criteria for the invertibility of elements, which generalize the results obtained earlier, and formulate corollaries for (n + 1)-groups and polyagroups, i.e., quasigroup associates.