Отримано поточкові оцінки зверху для розв’язків двічі нелінійних анізотропних параболічних рівнянь з абсорбційним членом, які виражені у термінах відстані до межі. Оцінки такого типу беруть свій початок в роботах Дж. Б. Келлера, Р. Оссермана і мають значення для так званих великих розв’язків.
Получены поточечные оценки сверху для решений дважды нелинейных анизотропных параболических уравнений с абсорбционным членом в терминах расстояния до границы. Оценки такого типа берут свое начало в работах Дж. Келлера, Р. Оссермана и имеют значение для так называемых больших решений.
The main purpose is to obtain the pointwise upper estimates in terms of distance to the boundary for nonnegative solutions of such equations. This type of estimates originate from the work of J. B. Keller, R. Osserman, who obtained a simple upper bound for any solution, in any number of variables for Laplace equation.