Рассматриваются аффинные отображения из Rn в Rn,n≥1. Доказана теорема o топологической сопряженности аффинного отображения, имеющего хотя бы одну неподвижную точку, с соответствующим линейным отображением. Получена классификация, с точностью до топологической сопряженности, аффинных отображений из R в R, а также тех аффинных отображений из Rn в Rn,n>1, которые имеют хотя бы одну неподвижную точку и чьи линейные части не являются периодическими.
We consider affine mappings from Rn into Rn,n≥1. We prove a theorem on the topological conjugacy of an affine mapping that has at least one fixed point to the corresponding linear mapping. We give a classification, up to topological conjugacy, for affine mappings from R into R and also for affine mappings from Rn into Rn,n>1, having at least one fixed point and the nonperiodic linear part.