Показано, як можна звести вивчення збуреного оператора множення на матричний многочлен у просторі L₂(ℝ,ℂⁿ) до вивчення збуреного оператора множення на незалежну змінну в просторі L₂(ℝ,ω,ℂᴺ) з вагою ω, що задовольняє умову Макенхаупта.
It is proved that the study of a perturbed multiplication operator on a matrix polynomial in the space L₂(ℝ,ℂⁿ) may be reduced to the study of a perturbed multiplication operator with independent variable in the space L₂(ℝ,ω,ℂᴺ) with weight ω satisfying the Mackenhaupt condition.