Вивчаються крайові задачі, що виникають при дослідженні дифракції акустичних хвиль на нескінченному циліндрі із довільною формою поперечного перерізу, який розташований в середині клина так, що вісь циліндра паралельна до ребра клина. Розвинуто теорію потенціала, що дозволяє звести вказані крайові задачі до інтегральних рівнянь на одновимірному контурі — межі перерізу циліндра. Доведено теореми існування та єдиності розв’язків крайових задач і відповідних їм інтегральних рівнянь. Встановлено принцип граничного поглинання для даної ситуації. Для обчислення ядер інтегральних операторів побудовано ефективні алгоритми.
The boundary-value problems are investigated that arise when studying the diffraction of acoustic waves on an infinite cylinder with cross-section of an arbitrary shape situated inside a wedge so that the axis of the cylinder is parallel to the edge of the wedge. The potential theory is worked out which enables one to reduce these boundary-value problems to integral equations on a one-dimensional contour — the boundary of the cross-section of this cylinder. The theorems on existence and uniqueness of solutions to the boundary-value problems and the corresponding integral equations are proved. For this case, a principle of limit absorption is established. Effective algorithms for calculating the kernels of the integral operators are constructed.