Встановлено, що для збіжного в одиничному крузі добутку Бляшке B(z) умова −∞ < ∫log(1−t)n(t,B)dt є достатньою для обмеженості повної варіації logB на колі радіуса r, 0 < r < 1 а для добутків B(z) з нулями, зосередженими лише на одному промені, вона також і необхідна. Тут n(t,B) — кількість нулів функції B(z) в крузі радіуса t.
We establish that, for a Blaschke product B(z) convergent in the unit disk, the condition -∞ < ∫log(1−t)n(t,B)dt is sufficient for the total variation of logB to be bounded on a circle of radius r, 0 < r < 1. For products B(z) with zeros concentrated on a single ray, this condition is also necessary. Here, n(t, B) denotes the number of zeros of the functionB (z) in a disk of radiust.