Квазідоповнення М підпростору N банаховому простору Х називається строгим, якщо М не містить нескінченновимірного підпростору М1 такого, що лінійний многовид N+M1 - замкнутий. Доведено, що якщо Х сепарабельний, то N завжди має строге квазівідновлення. Розглянуто властивостей звужень операторів щільного вкладення на нескінченновимірні замкнені підпростори простору, в якому він означений.
A quasicomplement М of a subspace N of a Banach space X is called strict if M does not contain an infinite-dimensional subspace M1, such that the linear manifold N+M1, is closed. It is proved that if X is separable, then N always has a strict quasicomplement. We study the properties of the dense imbedding operator restricted to infinite-dimensional closed subspaces of the space, where it is defined.