Анотація:
Given a n-dimensional Riemannian manifold of arbitrary signature, we illustrate an algebraic method for constructing the coordinate webs separating the geodesic Hamilton-Jacobi equation by means of the eigenvalues of m ≤ n Killing two-tensors. Moreover, from the analysis of the eigenvalues, information about the possible symmetries of the web foliations arises. Three cases are examined: the orthogonal separation, the general separation, including non-orthogonal and isotropic coordinates, and the conformal separation, where Killing tensors are replaced by conformal Killing tensors. The method is illustrated by several examples and an application to the L-systems is provided.