Наукова електронна бібліотека
періодичних видань НАН України

Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Chanu, C.
dc.contributor.author Rastelli, G.
dc.date.accessioned 2019-02-16T08:09:39Z
dc.date.available 2019-02-16T08:09:39Z
dc.date.issued 2007
dc.identifier.citation Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds / C. Chanu, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 21 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 70H20; 70G45
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147786
dc.description.abstract Given a n-dimensional Riemannian manifold of arbitrary signature, we illustrate an algebraic method for constructing the coordinate webs separating the geodesic Hamilton-Jacobi equation by means of the eigenvalues of m ≤ n Killing two-tensors. Moreover, from the analysis of the eigenvalues, information about the possible symmetries of the web foliations arises. Three cases are examined: the orthogonal separation, the general separation, including non-orthogonal and isotropic coordinates, and the conformal separation, where Killing tensors are replaced by conformal Killing tensors. The method is illustrated by several examples and an application to the L-systems is provided. uk_UA
dc.description.sponsorship This paper is a contribution to the Vadim Kuznetsov Memorial Issue “Integrable Systems and Related Topics”. This research is partially supported by MIUR (National Research Project “Geometry of Dynamical System”) and by the research project “Progetto Lagrange” of Fondazione CRT. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис