Анотація:
Using the computational approach introduced in [Agore A.L., Bontea C.G., Militaru G., J. Algebra Appl. 12 (2013), 1250227, 24 pages] we classify all coalgebra split extensions of H₄ by k[Cn], where Cn is the cyclic group of order n and H₄ is Sweedler's 4-dimensional Hopf algebra. Equivalently, we classify all crossed products of Hopf algebras H₄#k[Cn] by explicitly computing two classifying objects: the cohomological 'group' H²(k[Cn],H₄) and CRP(k[Cn],H₄):= the set of types of isomorphisms of all crossed products H₄#k[Cn]. More precisely, all crossed products H₄#k[Cn] are described by generators and relations and classified: they are 4n-dimensional quantum groups H₄n,λ,t, parameterized by the set of all pairs (λ,t) consisting of an arbitrary unitary map t:Cn→C₂ and an n-th root λ of ±1. As an application, the group of Hopf algebra automorphisms of H₄n,λ,t is explicitly described.