Показати простий запис статті

dc.contributor.author Agore, A.L.
dc.contributor.author Bontea, C.G.
dc.contributor.author Militaru, G.
dc.date.accessioned 2019-02-10T19:10:07Z
dc.date.available 2019-02-10T19:10:07Z
dc.date.issued 2014
dc.identifier.citation The Classification of All Crossed Products H₄#k[Cn] / A.L. Agore, C.G. Bontea, G. Militaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 16T10; 16T05; 16S40
dc.identifier.other DOI:10.3842/SIGMA.2014.049
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/146697
dc.description.abstract Using the computational approach introduced in [Agore A.L., Bontea C.G., Militaru G., J. Algebra Appl. 12 (2013), 1250227, 24 pages] we classify all coalgebra split extensions of H₄ by k[Cn], where Cn is the cyclic group of order n and H₄ is Sweedler's 4-dimensional Hopf algebra. Equivalently, we classify all crossed products of Hopf algebras H₄#k[Cn] by explicitly computing two classifying objects: the cohomological 'group' H²(k[Cn],H₄) and CRP(k[Cn],H₄):= the set of types of isomorphisms of all crossed products H₄#k[Cn]. More precisely, all crossed products H₄#k[Cn] are described by generators and relations and classified: they are 4n-dimensional quantum groups H₄n,λ,t, parameterized by the set of all pairs (λ,t) consisting of an arbitrary unitary map t:Cn→C₂ and an n-th root λ of ±1. As an application, the group of Hopf algebra automorphisms of H₄n,λ,t is explicitly described. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html. The authors would like to thank the referees for their comments and suggestions that substantially improved the first version of this paper. A.L. Agore is research fellow ‘Aspirant’ of FWO-Vlaanderen. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, grant no. 88/05.10.2011. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title The Classification of All Crossed Products H₄#k[Cn] uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис