Анотація:
В статье исследуются нижние Q-гомеоморфизмы, которые естественным образом обобщают понятие квазиконформного отображения в направлении геометрического определения по Вяйсяля–Герингу. В статье найдены условия на мажоранту Q(x) для устранимости изолированных особенностей, а также для непрерывного и гомеоморфного продолжения отображений данного класса на регулярные границы. В частности, в работе доказаны далеко идущие обобщения известной теоремы Геринга–Мартио (1985) о гомеоморфном продолжении на границу квазиконформных отображений между областями квазиэкстремальной длины. Указанный класс областей включает в себя такие широкие классы областей как равномерные, выпуклые, гладкие и т.д. Показано, что области с так называемыми слабо плоскими границами являются локально связными в граничных точках. На этой основе получается распространение всех результатов и на этот еще более широкий класс границ. Области со слабо плоскими границами - наиболее широкие из известных классов областей, граничное соответствие между которыми при конформных и квазиконформных отображениях осуществляется поточечно, а не по простым концам. Развитая теория применима также к отображениям с конечным искажением площади и, в частности, к конечно билипшицевым отображениям, которые являются естественным обобщением хорошо известных классов изометрических и квазиизометрических отображений.