Анотація:
Тяжелое твердое тело с одной неподвижной точкой с центром тяжести, расположенным в главной плоскости эллипсоида инерции для неподвижной точки (y0 = 0), допускает маятниковые движения Млодзеевского |1]. Задача об устойчивости маятниковых движений рассматривалась в работах [2 |б|. Проведено исследование устойчивости колебаний малой амплитуды [2]. Дня тела, когда его центр тяжести находится на одной из главных осей инерции (у о = %о = 0), задача для быстрых вращений и вращений, близких к постоянным, решена в [3], результаты для произвольных вращений изложены в [4|. Доказано [5, б], что маятниковые движения обязательно содержат четыре нулевых характеристических показателя (XII), из которых два простые, а остальные образуют жорданову клетку плюс пару XII противоположного знака. В статье излагаются результаты по вычислению XII маятниковых колебаний Млодзеевского. Используется метод [7], впервые примененный для прецессий Гриоли. В пространстве параметров задачи строятся области, где выполняются необходимые условия устойчивости. и области неустойчивости. Маятниковые колебания являются наиболее общими симметричными периодическими движениями тяжелого твердого тела с одной неподвижной точкой [б, 8]. Наличие их тесно связано с проблемой неинтегрируемости задачи, решение которой требует знания ХП |6|.