This article is a continuation of previous works (see Yukhnovskii I.R. et al., J. Stat. Phys, 1995, 80, 405 and references therein), where we have described the behavior of a simple system of interacting particles in the region of temperatures at and about the critical point, T>=Tc. Now we present a description of the behavior of the system at the critical point Tc, ηc) and in the region below the critical point. The calculation is carried out from the first principles. The expression for the grand canonical partition function is brought to the functional integrals defined on the set of collective variables. The Ising-like form is singled out. Below Tc, when a gas-liquid system undergoes a phase transition of the first order, i.e., boiling, a "jump" occurs from the "extreme" high probability gas state to the "extreme" high probability liquid state, releasing or absorbing the latent heat of the transition. The phase equilibria conditions are also derived.
Ця стаття є продовженням наших попереднiх робiт (див. Yukhnovskii I.R. et al., J. Stat. Phys, 1995, 80, 405, а також посилання там), в яких ми описали поведiнку простої системи взаємодiючих частинок у критичнiй точцi i в областi температур вище критичної точки, T Ê Tc. Тут ми описуємо поведiнку системи в критичнiй точцi (Tc,ηc) i в областi температур нижче критичної точки. Розрахунки здiйснюються з перших принципiв. Вираз для великої статистичної суми приведений до функцiонального iнтегралу на множинi колективних змiнних i представлений в iзингоподiбнiй формi. Нижче Tc, де система демонструє фазовий перехiд першого роду, тобто кипiння, вiдбувається “стрибок” мiж “екстремально” високими ймовiрностями газового i рiдкого станiв, при цьому видiляється або поглинається прихована теплоту переходу.
Виведено також умови фазової рiвноваги.