The outcome of football games, as well as matches of most other popular team sports, depends on a combination
of the skills of players and coaches and a number of external factors which, due to their complex
nature, are presumably best viewed as random. Such parameters include the unpredictabilities of playing the
ball, the player's condition of the day or environmental influences such as the weather and the behavior of the
audience. Under such circumstances, it appears worthwhile to analyze football score data with the toolbox
of mathematical statistics in order to separate deterministic from stochastic effects and see what impact the
cooperative and social nature of the agents of the system has on the resulting stochastic observables. Considering
the probability distributions of scored goals for the home and away teams, it turns out that especially
the tails of the distributions are not well described by the Poissonian or binomial model resulting from the
assumption of uncorrelated random events. On the contrary, some more specific probability densities such
as those discussed in the context of extreme-value statistics or the so-called negative binomial distribution fit
these data rather well. There seemed to be no good argument to date, however, why the simplest Poissonian
model fails and, instead, the latter distributions should be observed. To fill this gap, we introduced a number of
microscopic models for the scoring behavior, resulting in a Bernoulli random process with a simple component
of self-affirmation. These models allow us to represent the observed probability distributions surprisingly well,
and the phenomenological distributions used earlier can be understood as special cases within this framework.
We analyzed historical football score data from many leagues in Europe as well as from international
tournaments, including data from all past tournaments of the FIFAWorld Cup series, and found the proposed
models to be applicable in all cases. To complete the picture, we conducted a field study with visitors of a science
showcase to collect additional data from matches of tabletop football. As it turns out, also the latter data
are represented well with our feedback models, underscoring their apparently rather universal applicability.
Результати футбольних матчiв, як i бiльшостi iнших iгрових видiв спорту, залежать вiд таких чинникiв, як майстернiсть гравцiв, досвiд тренерiв, а також багатьох зовнiшнiх факторiв, якi, внаслiдок своєї складної природи, мабуть, краще вважати випадковими. Серед згаданих факторiв – непередбачуванiсть руху м’яча, iгрова форма футболiстiв у день матчу, а також умови середовища, такi як погода та поведiнка вболiвальникiв. За таких обставин варто проаналiзувати футбольнi рахунки крiзь призму математичної статистики з метою роздiлення детермiнiстичних ефектiв вiд випадкових i з’ясування, який внесок привносять колективна та соцiальна природа складових системи на результуючi спостережнi величини. Розглядаючи розподiли ймовiрностей забитих голiв для команд господарiв та гостей, виявилось, що “хвости” цих розподiлiв не можуть бути описанi на основi моделi Пуассона чи бiномiальної моделi, якi випливають iз припущення про нескорельовану природу випадкових подiй. З iншого боку, деякi iншi характернi розподiли густини ймовiрностi, якi обговорюються в контекстi статистики екстремальних значень або ж так званих вiд’ємних бiномiальних розподiлiв, достатньо добре вiдтворюють цi результати. Так виглядає, що на сьогоднi немає аргументованих пояснень, чому найпростiша модель Пуассона не є застосовною в згаданих випадках, а спостерiгаються замiсть цього вищеописанi розподiли. Щоб заповнити цей пробiл, ми ввели низку мiкроскопiчних моделей для опису результатiв матчiв, якi описуюють випадковi процеси Бернуллi з простою компонентою самопiдтвердження. Цi моделi дозволили нам несподiвано добре описати спостережнi розподiли ймовiрностей, а феноменологiчнi розподiли, якi використовувалися перед тим, трактуються в рамках нашого пiдходу як частковi випадки. Ми проаналiзували результати футбольних матчiв багатьох європейських чемпiонатiв, а також мiжнародних турнiрiв, включно з даними усiх останнiх турнiрiв Чемпiонату свiту ФIФА, i показали, що запропонованi моделi є застосовними в усiх вищезгаданих випадках. Для повноти картини, ми провели польовi дослiдження з вiдвiдувачами наукових виставок з метою збору додаткових даних про результати матчiв з настiльного футболу. Як виявилось, цi останнi данi також достатньо добре описуються в рамках наших моделей зi зворотнiм зв’язком, пiдкреслюючи їх очевидну унiверсальнiсть.