Представлены результаты, необходимые для построения спектральной теории трехмерных периодических структур. Получено аналитическое представление канонической функции Грина, определена естественная область вариации спектрального параметра (комплексной частоты) – бесконечнолистная риманова поверхность, сформулированы утверждения, позволяющие оценить области локализации элементов спектрального множества.
Наведено результати, що є необхідними для побудови спектральної теорії тривимірних періодичних структур. Отримано аналітичне зображення канонічної функції Гріна, визначено природну область варіації спектрального параметра (комплексної частоти) – нескінченнолистову ріманову поверхню, сформульовано твердження, що дозволяють оцінити області локалізації елементів спектральної множини.
The results required for constructing a spectral theory of three-dimensional periodic structures are presented in the paper. An analytical representation for the canonical Green function is derived, the natural domain for the spectral parameter (complex-valued frequency) is determined in the form of the infinite-sheeted Riemann surface. Some statements allowing one to estimate the location of the spectral set members are formulated.