Для автономных систем обыкновенных дифференциальных уравнений доказана теорема о существовании функции, имеющей знакопостоянную производную. Показано, что для любого m такая функция может быть выбрана в классе непрерывно дифференцируемых до m-го порядка включительно. Доказательство является конструктивным и дает один из способов построения функции со знакопостоянной производной. В качестве примера рассмотрен класс систем, являющийся обобщением примера Арцтейна.
Для автономних систем звичайних диференцiальних рiвнянь доведено теорему про iснування функцiї, яка має знакосталу похiдну. Показано, що для будь-якого m таку функцiю можна вибрати у класi неперервно диференцiйовних функцiй до m-го порядку включно. Доведення є конструктивним i дає один iз способiв побудови функцiї зi знакосталою похiдною. Як приклад розглянуто клас систем, який є узагальненням прикладу Арцтейна.
For autonomous systems of ordinary differential equations the theorem of existence of function having semidefinite derivative is proved. It is shown that for any m such function can be chosen from the class of continuously differentiable up to order m inclusively. The proof is constructive and gives some approach for constructing a function with semidefinite derivative. A class of systems generalizing Artstein’s circle is considered as an example.