Побудовано інтегральні оператори, що переводять довільні функції в регулярні розв'язки рівняння гіперболічного типу другого і вищих порядків. Розв'язано задачу Коші для рівняння гіперболічного типу четвертого порядку. Використання апарату спеціальних функцій надало змогу одержати зображення розв'язків рівнянь у частинних похідних у зручному для дослідження вигляді. Попутно розв'язано інтегральні рівняння типу згортки зі спеціальними функціями в ядрі.
Построены интегральные операторы, переводящие произвольные функции в регулярные решения уравнения гиперболического типа второго и высших порядков. Решена задача Коши для уравнения гиперболического типа четвертого порядка. Использование аппарата специальных функций позволило получить представление решений уравнений в частных производных в удобном для исследований виде. Попутно решены интегральные уравнения типа свертки со специальными функциями в ядре.
Integral operators that translate arbitrary functions into regular solutions of the hyperbolic equation of the second and higher orders are constructed. The Cauchy problem for the fourth-order hyperbolic equation is solved. The use of the theory of special functions helped us to obtain the image of solutions of partial derivative equations in a form convenient for the analysis. Along the way, solvable integral equations with special functions in the kernel are solved.