Рассмотрен класс задач евклидовой комбинаторной оптимизации как задач дискретной оптимизации на множестве комбинаторных конфигураций, отображенном в арифметическое евклидово пространство. Дан обзор современных методов евклидовой комбинаторной оптимизации. Описаны свойства соответствующих образов комбинаторных множеств. Предложена теория непрерывных функциональных представлений и выпуклых продолжений для решения указанного класса задач. Отмечены области практического приложения и перспективные направления исследований.
Розглянуто клас задач евклідової комбінаторної оптимізації як задач дискретної оптимізації на множині комбінаторних конфігурацій, відображеній в арифметичний евклідів простір. Наведено огляд сучасних методів евклідової комбінаторної оптимізації. Описано властивості відповідних образів комбінаторних множин. Запропоновано теорію неперервних функціональних представлень і опуклих продовжень для розв'язання зазначеного класу задач. Визначено сфери практичного застосування та перспективні напрямки досліджень.
Euclidean combinatorial optimization problems are considered as discrete optimization problems on a set of combinatorial configurations mapped into an arithmetic Euclidean space. Modern methods of Euclidean combinatorial optimization are overviewed. The properties of the corresponding images of combinatorial sets are described. A theory of continuous functional representations and convex extensions is proposed for solving this class of problems. Areas of practical application and promising research areas are indicated.