Показати простий запис статті
dc.contributor.author |
Fanti, E.L.C. |
|
dc.contributor.author |
Silva, L.S. |
|
dc.date.accessioned |
2023-03-06T14:31:02Z |
|
dc.date.available |
2023-03-06T14:31:02Z |
|
dc.date.issued |
2020 |
|
dc.identifier.citation |
Some properties of E(G,W,FTG) and an application in the theory of splittings of groups / E.L.C. Fanti, L.S. Silva // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 179–193. — Бібліогр.: 19 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
DOI:10.12958/adm1246 |
|
dc.identifier.other |
2010 MSC: 20E06, 20J06, 57M07 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/188562 |
|
dc.description.abstract |
Let us consider W a G-set and M a Z₂G-module, where G is a group. In this paper we investigate some properties of the cohomological the theory of splittings of groups. Namely, we give a proof of the invariant E(G,W,M), defined in [5] and present related results with independence of E(G,W,M) with respect to the set of G-orbit representatives in W and properties of the invariant E(G,W,FTG) establishing a relation with the end of pairs of groups ê(G, T), defined by Kropphller and Holler in [15]. The main results give necessary conditions for G to split over a subgroup T, in the cases where M = Z₂(G/T ) or M = FTG. |
uk_UA |
dc.description.sponsorship |
The authors’ research was supported by FAPESP (grant 12/24454-8, 16/24707-4) and CAPES. We would like to thank to Professor G. P. Scott for the prompt attention and a suggestion for an example. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Some properties of E(G,W,FTG) and an application in the theory of splittings of groups |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті