We study the Dirichlet problem for the Poisson equations △u(z) = g(z) with g ∈ Lp, p > 1, and continuous boundary data φ : ∂D → ℝ in arbitrary Jordan domains D in ℂ and prove the existence of continuous solutions u of the problem.
Мы изучаем задачу Дирихле для уравнений Пуассона △u(z) = g(z) с g ∈ Lp, p > 1, и непрерывными граничными данными φ : ∂D → ℝ в произвольных жордановых областях D ⊂ ℂ и доказываем существование непрерывных решений u этой задачи.
Ми вивчаємо задачу Дiрихле для рiвнянь Пуасона △u(z) = g(z) с g ∈ Lp, p > 1, та неперервними граничними даними φ : ∂D → ℝ в довiльних жорданових областях D ⊂ ℂ та доводимо iснування неперервних рiшень u цiєї задачi