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DIRICHLET PROBLEM FOR POISSON EQUATIONS
IN JORDAN DOMAINS

First, we study the Dirichlet problem for the Poisson equations Au(z) = g(z) with g € LP, p > 1, and
continuous boundary data ¢ : 9D — R in arbitrary Jordan domains D in C and prove the existence
of continuous solutions u of the problem in the class W;>”. Moreover, u € W,-¢ for some ¢ > 2 and u
is locally Holder continuous. Furthermore, u € C’llo’s‘ with @ = (p — 2)/p if p > 2. Then, on this basis
and applying the Leray—Schauder approach, we obtain the similar results for the Dirichlet problem
with continuous data in arbitrary Jordan domains to the quasilinear Poisson equations of the form
Au(z) = h(z) - f(u(z)) with the same assumptions on h as for g above and continuous functions
f : R — R, either bounded or with nondecreasing |f| of [t| such that f(t)/t — 0 as t — oco. We
also give here applications to mathematical physics that are relevant to problems of diffusion with
absorbtion, plasma and combustion. In addition, we consider the Dirichlet problem for the Poisson
equations in the unit disk D C C with arbitrary boundary data ¢ : 0D — R that are measurable with
respect to logarithmic capacity. Here we establish the existence of continuous nonclassical solutions w
of the problem in terms of the angular limits in D a.e. on 0D with respect to logarithmic capacity with
the same local properties as above. Finally, we extend these results to almost smooth Jordan domains
with qusihyperbolic boundary condition by Gehring—Martio.
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angular limits.

1. Introduction.
First of all, recall that the Poisson kernel is the 2m—periodic function
1—r?

P(O) = {5 ey <1, OCR. (1)

Here we will apply the notation of the Poisson integral in the unit disk D :

™

Py(z) = % P90 —t) o) dt, z=re’ r<1,9eR (2)

—T

for arbitrary continuous functions ¢ : 9D — R. As known, P, is a harmonic function
in D that is extended by continuity to D with ¢ as its boundary data, see e.g. .D.2
in [18].

Similarly, given a Jordan domain D in C and a continuous boundary function
@ : 0D — R, let us denote by D, the harmonic function in D that has the continuous
extension to D with ¢ as its boundary data. As known, by the Lindeléf maximum
principle, see e.g. Lemma 1.1 in [10], we have the uniqueness theorem for the bounded
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Dirichlet problem for Poisson equations in Jordan domains

harmonic functions with continuous boundary data. By the Riemann theorem, see e.g.
Theorem II.2.1 in [14], there is a conformal mapping f : D — D that is extended to
a homeomorphism f D — D by the Caratheodory theorem, see e.g. Theorem I1.3.4
in [14]. Thus, the Dirichlet operator D, has the following useful representation

Dy(2) = P, -1(f(2)), 2€D,  where f. = flop . (3)

It is also known, see e.g. Corollary 1 in [16], that the Newtonian potential
1
Ny(z) = 2F/10g|z —w|g(w) dm(w) (4)
C

of integrable functions g : C — R with compact support satisfies the Poisson equation
ANy = g (5)

in the distributional sense, i.e.,

/N ) Ap(z) dmz /w mz)  VgeCr©). (6

As usual, here C§°(C) denotes the class of all inﬁnitely differentiable functions
¥ : C = R with compact support in C, A = &EQ + 8 < is the Laplace operator and
dm(z) corresponds to the Lebesgue measure in C.

2. Dirichlet problem with continuous data.

By Theorem 2 in [16] we come to the following result on the existence, regularity and
representation of solutions for the Dirichlet problem to the Poisson equation in arbitrary
Jordan domains D in C where we assume that the charge density g is extended by zero
outside of D.

Theorem 1. Let D be a Jordan domain in C, ¢ : 9D — R be a continuous function
and g : D — R belong to the class LP(D) for p > 1. Then the function

U := N, — Dy; + D, Ny := Nglap , (7)

is continuous in D with Ulpp = ¢, belongs to the class Wli’f(D) and satisfies the
Poisson equation AU = g a.e. in D. Moreover, U € I/Vlif(D) for some g > 2 and U
is locally Holder continuous in D. Furthermore, U € C’l{)’?(D) with o = (p — 2)/p if
g € LP(D) forp > 2.

Remark 1. Note also by the way that a generalized solution of the Dirichlet
problem to the Poisson equation in the class C'(D) N Wli’f(D) is unique at all, see e.g.
Theorem 8.30 in [13], and (7) gives the effective representation of this unique solution.

The case of quasilinear Poisson equations is reduced to the case of the linear Poisson
equations by the Leray—Schauder approach.
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Theorem 2. Let D be a Jordan domain in C, ¢ : 0D — R be a continuous function
and h : D — R be a function in the class LP(D) for p > 1. Suppose that a continuous
function f : R — R has nondecreasing |f | of |t| and

lim 1) = 0.

t—+o00 t

(8)

Then there is a continuous function U : D — R with Ulgp = ¢, Ulp € VVﬁ’f such that
AU(z) = h(z)- f(U(2)) fora.e. z€ D . 9)

Moreover, U € Wl’q(D) for some q > 2 and U is locally Holder continuous. Furthermore,

loc

U e CH*(D) witha=(p—2)/pifp>2.

loc

In particular, the latter statement in Theorem 2 implies that U € C’llo’g‘(D) for all
a = (0,1) if h is bounded.

Proof. 1f ||h|[, = 0 or ||f|lc = 0, then the Dirichlet operator D, gives the desired
solution of the Dirichlet problem for equation (9), see e.g. 1.D.2 in [18]. Hence we may
assume further that [|h||, # 0 and || f|lc # 0.

By Theorem 1 and the maximum principle for harmonic functions, we obtain the
family of operators F(g;7) : LP(D) — L?(D), 7 € [0,1]:

F(g;7) = 7h- f(Ng—Dns +Dy) , Ny := Nglop , V7 e|0,1] (10)

which satisfies all groups of hypothesis H1-H3 of Theorem 1 in [22].

H1). First of all, F(g;7) € LP(D) for all 7 € [0,1] and g € LP(D) because by
Theorem 1 f(Ny — Dny + D,) is a continuous function and, moreover, by Theorem 1
in [16]

1E (g T)llp < Nhlly [F (2M lgllp +llello) | < oo V7 e0,1].

Thus, by Theorem 1 in combination with the Arzela—Ascoli theorem, see e.g. Theorem
IV.6.7 in [6], the operators F'(g;T) are completely continuous for each 7 € [0, 1] and
even uniformly continuous with respect to the parameter T € [0, 1].

H2). The index of the operator F(g;0) is obviously equal to 1.

H3). By Theorem 1 in [16] and the maximum principle for harmonic functions, we
have the estimate for solutions g € LP of the equations g = F'(g;7):

lgllo < MAllp 1 (2M igllp + llelle) | < (12l [F(3M gl
whenever ||g[|, > ||¢|lc/M, i.e. then it should be

[FB3M flgllp)l o 1
3Migll,  — 3M Al

(11)
and hence |[|g||, should be bounded in view of condition (8).
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Thus, by Theorem 1 in [22] there is a function g € LP(D) such that g = F'(g; 1) and,
consequently, by our Theorem 1 the function U := N, — Dz + Dy, gives the desired
solution of the Dirichlet problem for the quasilinear Poisson equation (9). O

Remark 2. As it is clear from the proof, Theorem 2 is valid if f is an arbitrary
continuous bounded function. Moreover, condition (8) can be replaced by the weaker
£ ()] 1

lim su < 12
iyt 3M ||l 12

where M is the constant from the estimate (14) of Theorem 1 in [16].

Theorem 2 together with Remark 2 can be applied to some physical problems. The
first circle of such applications is relevant to reaction-diffusion problems. Problems of
this type are discussed in [5], p. 4, and, in detail, in [2|. A nonlinear system is obtained
for the density u and the temperature T of the reactant. Upon eliminating 7" the system
can be reduced to the equation

Au = X f(u) (13)

with A(z) = A > 0 and, for isothermal reactions, f(u) = u? where ¢ > 0 is called the
order of the reaction. It turns out that the density of the reactant u may be zero in a
subdomain called a dead core. A particularization of results in Chapter 1 of |5] shows
that a dead core may exist just if and only if 0 < g < 1 and A is large enough, see also
the corresponding examples in [15]. In this connection, the following statements may
be of independent interest.

Corollary 1. Let D be a Jordan domain in C, ¢ : 0D — R be a continuous
function and let h : D — R be a function in the class LP(D), p > 1. Then there ezists
a continuous function u : D — R with ulgp = ¢ such that u € VVli’f(D) and

Au(z) = h(z)-ui(z), 0 < qg <1 (14)

a.e. in D. Moreover, u € WI})CB(D) for some B > 2 and u is locally Hélder continuous

in D. Furthermore, u € C-*(D) with o = (p — 2)/p if p > 2.

loc

Corollary 2. Let D be a Jordan domain in C and ¢ : 0D — R be a continuous
function. Then there is a continuous function u : D — R with ulgpp = ¢ such that
u € VVli’f(D) forallp > 1 and

Au(z) = uwi(z), 0<gq <1, (15)

a.e. in D. Moreover, u € C’llo’?(D) for all a € (0,1).

Note also that certain mathematical models of a thermal evolution of a heated
plasma lead to nonlinear equations of the type (13). Indeed, it is known that some of
them have the form Ay (u) = f(u) with ¢/(0) = 400 and ¢'(u) > 0 if u # 0 as, for
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instance, ¥ (u) = |u/?tu under 0 < ¢ < 1, see e.g. [5]. With the replacement of the
function U = t(u) = |u|? - signu, we have that u = |U|? -signU, Q = 1/q, and, with
the choice f(u) = |u|? - signu, we come to the equation AU = |U| - sign U = (U).

Corollary 3. Let D be a Jordan domain in C and ¢ : 0D — R be a continuous
function. Then there is a continuous function U : D — R with Ulpp = ¢ such that
u e W2P(D) for allp > 1 and

loc
AUG) = UEIT0GE), 0 < g <1, (16)
a.e. in D. Moreover, U € C'llo’?(D) for all a € (0,1).

Finally, we recall that in the combustion theory, see e.g. [3|, [24] and the references
therein, the following model equation
ou(z,t 1
((915)_(5'&”4_6“’ t>0, ze€ D, (17)
takes a special place. Here u > 0 is the temperature of the medium and ¢ is a certain
positive parameter.

We restrict ourselves here by the stationary case, although our approach makes
it possible to study the parabolic equation (17), see [15]. Namely, the equation (9) is
appeared here with A = § > 0 and the function f(u) = e™" that is bounded as in
Remark 2.

Corollary 4. Let D be a Jordan domain in C and ¢ : 0D — R be a continuous
function. Then there is a continuous function U : D — R with Ulpp = ¢ such that
uw e W2P(D) for all p > 1 and

loc
AU@z) = 6-¢79@  6>0, (18)

a.e. in D. Moreover, U € C%(D) for all a € (0,1).

loc
Due to the factorization theorem in [15]|, we plan to extend these results to semi-
linear equations describing the corresponding physical phenomena in anisotropic and
inhomogeneous media in arbitrary Jordan domains.

3. The definition and preliminary remarks on the logarithmic capacity.

Given a bounded Borel set E in the plane C, a mass distribution on F is a
nonnegative completely additive function v of a set defined on its Borel subsets with
v(E) = 1. The function

0= [1og| 1| avtc) (19)
FE

is called a logarithmic potential of the mass distribution v at a point z € C. A
logarithmic capacity C(FE) of the Borel set E is the quantity

CE)=¢", V= inf Vo(E),  Vy(E) = sup U"(2) . (20)
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It is also well-known the following geometric characterization of the logarithmic
capacity, see e.g. the point 110 in [23]:

C(FE) = 7(F) := lim Vnﬁ (21)

n—o0

where V,, denotes the supremum of the product

=1,...,n
Vizt,.oom) = [ o —l (22)
k<l
taken over all collections of points 21, ..., z, in the set E. Following Fékete, see [9], the

quantity 7(F) is called the transfinite diameter of the set E.

Remark 3. Thus, we see that if C(EF) = 0, then C(f(F)) = 0 for an arbitrary
mapping f that is continuous by Hoélder and, in particular, for quasiconformal mappings
on compact sets, see e.g. Theorem I11.4.3 in [21].

In order to introduce sets that are measurable with respect to logarithmic capacity,
we define, following |7], inner C, and outer C* capacities :

Cy«(E) : = }ilé% C(E), C*(E) : = b%% C(0) (23)

where supremum is taken over all compact sets F© C C and infimum is taken over
all open sets O C C. A set E C C is called measurable with respect to the
logarithmic capacity if C*(E) = C(F), and the common value of C,(F) and C*(E)
is still denoted by C(E).

A function ¢ : E — C defined on a bounded set £ C C is called measurable
with respect to logarithmic capacity if, for all open sets O C C, the sets

Q={z€E:¢(z) €0} (24)

are measurable with respect to logarithmic capacity. It is clear from the definition that
the set E is itself measurable with respect to logarithmic capacity.

Note also that sets of logarithmic capacity zero coincide with sets of the so-called
absolute harmonic measure zero introduced by Nevanlinna, see Chapter V in [23].
Hence a set F is of (Hausdorff) length zero if C(E) = 0, see Theorem V.6.2 in [23].
However, there exist sets of length zero having a positive logarithmic capacity, see e.g.
Theorem IV.5 in [7].

Remark 4. It is known that Borel sets and, in particular, compact and open
sets are measurable with respect to logarithmic capacity, see e.g. Lemma 1.1 and
Theorem III.7 in [7]. Moreover, as it follows from the definition, any set £ C C of
finite logarithmic capacity can be represented as a union of a sigma-compactum (union
of countable collection of compact sets) and a set of logarithmic capacity zero. Thus,
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the measurability of functions with respect to logarithmic capacity is invariant under
Holder continuous change of variables.

It is also known that the Borel sets and, in particular, compact sets are measurable
with respect to all Hausdorff’s measures and, in particular, with respect to measure of
length, see e.g. theorem I1(7.4) in [27]. Consequently, any set E C C of finite logarithmic
capacity is measurable with respect to measure of length. Thus, on such a set any
function ¢ : E — C being measurable with respect to logarithmic capacity is also
measurable with respect to measure of length on E. However, there exist functions
that are measurable with respect to measure of length but not measurable with respect
to logarithmic capacity, see e.g. Theorem IV.5 in [7].

Dealing with measurable boundary functions ¢(¢) with respect to the logarithmic
capacity, we will use the abbreviation g.e. (quasi-everywhere) on a set F C C, if
a property holds for all { € E except its subset of zero logarithmic capacity, see [19].

4. Dirichlet problem with measurable data in the unit disk.
In the paper [8], it was proved as Theorem 3.1 the following analog of the known
Luzin theorem in terms of logarithmic capacity, cf. e.g. Theorem VII(2.3) in [27].

Proposition 1. Let ¢ : [a,b] — R be a measurable function with respect to logarithmic
capacity. Then there is a continuous function ® : [a,b] — R such that ®'(z) = ¢(x)
g.e. on (a,b). Furthermore, the function ® can be chosen such that ®(a) = ®(b) =0
and |®(z)| < e under arbitrary prescribed € > 0 for all x € [a, b).

Corollary 5. Let ¢ : 0D — R be a measurable function with respect to logarithmic
capacity. Then there is a continuous function ® : OD — R such that ®'(et) = ¢(e¥)
g.e. on R.

The Poisson—Stieltjes integral

™

1 . )
Aop(z) = by P.(0 —t) d®(e?), z=re?, r<1,9eR (25)

is well-defined for arbitrary continuous functions ® : 9D — R, see e.g. Section 2 in [26].

Directly by the definition of the Riemann—Stieltjes integral and the Weierstrass
type theorem for harmonic functions, see e.g. Theorem 1.3.1 in [14], Ag is a harmonic
function in the unit disk D := {z € C : |z| < 1} because the function P.(¢ — t) is the
real part of the analytic function

_ (+z
= =

Ac(z) - C=¢" z=re"” , r<1,dandteR. (26)

Next, by Theorem 1 in [26] we have the following useful conclusion.
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Proposition 2. Let ¢ : 0D — R be a measurable function with respect to logarithmic
capacity and ® : 9D — R be a continuous function with ' (e'*) = ¢(e) q.e. on R. Then
Ag has the angular limit

lim Ag(2) = ¢(() g.e. on 0D . (27)

z—(

Finally, by Theorem 2 in [16], Proposition 2 and the known Poisson formula, see
e.g. I.D.2 in [18], we come to the following result on the existence, regularity and
representation of solutions for the Dirichlet problem to the Poisson equation in the
unit disk ). We assume that the charge density ¢ is extended by zero outside of I in
the next theorem.

Theorem 3. Let a function ¢ : 0D — R be measurable with respect to logarithmic
capacity and let a continuous function ® correspond to ¢ by Corollary 5. Suppose that
a function g : D — R is in the class LP(D) for p > 1. Then the following function in D

U := Ng — 'PN; + As , N; = Ng|8]]]> ) (28)

belongs to the class Wﬁ’f(ﬂ)), satisfies the Poisson equation AU = g a.e. in D and has
the angular limit

lim U(z) = ¢(() g.e. on D . (29)

z—(

Moreover, U € Wl’q(]D)) for some q > 2 and U is locally Hélder continuous.

loc

Furthermore, U € CL*(D) with o = (p — 2)/p if g € LP(D) for p > 2.

loc

Remark 5. Note that by the Luzin result, see also Theorem 3 in [26], the statement
of Theorem 3 is valid in terms of the length measure as well as the harmonic measure
on 0D. However, by the well-known Ahlfors—Beurling example, see [1]|, the sets of
length zero as well as of harmonic measure zero are not invariant with respect to
quasiconformal changes of variables. The latter circumstance does not make it is possible
to apply the result in the future for the extension of the statement to generalizations
of the Laplace equation in anisotropic and inhomogeneous media. Hence we prefer to
use logarithmic capacity.

5. Dirichlet problem with measurable data in almost smooth domains.
We say that a Jordan curve I' in C is almost smooth if [' has a tangent q.e. Here
it is said that a straight line L in C is tangent to I' at a point zg € I if
dist (z, L
lim sup dist (2, L) =0. (30)

z2—20,2€T |Z - ZO|

In particular, I' is almost smooth if I' has a tangent at all its points except a countable
set. The nature of such Jordan curves I' is complicated enough because the countable
set can be everywhere dense in I'.
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Now, given a domain D in C, kp(z, z9) denotes the quasihyperbolic distance,

. ds
kD(Z,ZO) = lgf/\d(é_?a‘D), (31)
Y

introduced in the paper [12]. Here d(¢,0D) denotes the Euclidean distance from the
point ¢ € D to D and the infimum is taken over all rectifiable curves v joining the
points z and zg in D.
Next, it is said that a domain D satisfies the quasihyperbolic boundary condi-
tion if d(z0.0D)
20,
k <aln——>+b VzeD 32
p(z,20) < a nd(z,(?D) + z (32)
for constants a and b and a point zg € D. The latter notion was introduced in [10] but,
before it, was first applied in [4].

Remark 6. Given a Jordan domain D in C with the almost smooth boundary
satisfying the quasihyperbolic boundary condition. By the Riemann theorem, see e.g.
Theorem I1.2.1 in [14], there is a conformal mapping f : D — D that is extended to
a homeomorphism f : D — D by the Caratheodory theorem, see e.g. Theorem I1.3.4
in [14]. Moreover, f, := f lop, as well as f !, is Holder continuous by Corollary to
Theorem 1 in [4]. Thus, by Remark 4 a function ¢ : 0D — R is measurable with
respect to logarithmic capacity if and only if the function ¢ := ¢ o f;1 : D — R is
so. Set & := Vo f, where ¥ : JD — R is a continuous function corresponding to 1 by
Corollary 5.

Proposition 3. Let D be a Jordan domain in C with the almost smooth boundary
satisfying the quasihyperbolic boundary condition. Suppose that ¢ : 0D — R is measu-
rable with respect to logarithmic capacity and ® : 9D — R is the continuous function
corresponding to p by Remark 6. Then the harmonic function Lo(2) == Agq,—1(f(2))
has the angular limit ¢ q.e. on OD.

Proof. Indeed, by Remark 6 and Proposition 2 there is the angular limit
lim Ag(w) = ¥(§) q.e. on D . (33)

w—E

By the Lindel6f theorem, see e.g. Theorem II.C.2 in [18], if 9D has a tangent at a
point (, then

arg [f(¢) — f(2)] —arg [ — z] — const  as z — (.
After the change of variables ¢ := f(¢) and w := f(z), we have that

arg [€ —w] —arg [f1(€) — fHw)] = const  asw — € .

In other words, the conformal images of sectors in D with a vertex at £ is asymptotically
the same as sectors in D with a vertex at (. Thus, nontangential paths in D are
transformed under f~! into nontangential paths in D.
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Recall that firstly the almost smooth Jordan curve 0D has a tangent q.e., secondly
by Remark 6 the mappings f, and f; ! are Holder continuous, and thirdly by Remark 3
they transform sets of logarithmic capacity zero into sets of logarithmic capacity zero.
Consequently, (33) implies the desired conclusion. [J

Finally, by Theorem 2 in [16], Proposition 3 and the Poisson formula, we come to
the following result on the existence, regularity and representation of solutions for the
Dirichlet problem to the Poisson equation in the Jordan domains. We assume here that
the charge density g is extended by zero outside of D in the next theorem.

Theorem 4. Let D be a Jordan domain in C with the almost smooth boundary
satisfying the quasihyperbolic boundary condition, a function ¢ : 0D — R be measurable
with respect to logarithmic capacity and let a continuous function ® correspond to ¢ by
Remark 6. Suppose that a function g : D — R is in the class LP(D) for p > 1. Then
the following function in D

U := Ng — DN; + Lo, N; = Ngylop , (34)
belongs to the class VVl(ij(D), satisfies the Poisson equation AU = g a.e. in D and has
the angular limit

lim U(z) = ¢(() g.e. on 0D . (35)

z—(

Moreover, U € VVl(l)f(D) for some ¢ > 2 and U 1is locally Hélder continuous.
Furthermore, U € C2*(D) with o= (p — 2)/p if g € LP(D) for p > 2.

loc

Remark 7. Note that by the Luzin result, see also Theorem 3 in [26], the statement
of Theorem 4 is valid in terms of the length measure on rectifiable dD. Indeed, by the
Riesz theorem length f;1(E) = 0 whenever E C D with |E| = 0, see e.g. Theorem
I1.C.1 and Theorems II.D.2 in [18|. Conversely, by the Lavrentiev theorem |f.(£)| =0
whenever £ C 0D and length £ = 0, see [20], see also the point II1.1.5 in [25].
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B. I'yrasuckuii, B. Psazaunos, 9. Aky6os

Bagaya JupuxJie njsa ypaBHeHuii IlyaccoHa B >KOpaaHOBBIX 06JIaCTSIX.

Ipexxae Bcero, Mbl u3ydaeM 3anady wpuxse mis ypasaenwii Ilyaccona Au(z) = g(z) ¢ g € L?,
p > 1, u HeNpPepLIBHBIMU I'PAHMYHBIMU JAaHHBIMEA @ : 0D — R B IpoM3BOIBHBIX YKOPIAHOBBIX 00J1a-
crax D C C u qokasbiBaeM CyNIECTBOBAHUE HEMPEPBHIBHBIX PEIIEHUM U ITOH 3a1a9u B KJIAcce Wlicp
Kpowme rtoro, u € Wﬁ)’f JJIsi HEKOTOPOro ¢ > 2 W U JIOKAJbHO HenpepbiBHBI 110 [enbuepy. Bosee To-

1 .
ro, u € Ciof ¢ a = (p—2)/p, ecom p > 2. Barem, Ha 9TOH OCHOBE M IIPUMEHsS IOAXOL Jlepe—
Illaynepa, MBI TOJIy9aeM aHAJOTMYHBLIE Pe3yabTaThl JJId 3afaun Jupuxie ¢ HellpepbIBHLIMUA IPaHUY-

HBIMU JJaHHBIMHA B IIPOU3BOJIBHBIX 2KOPJIaHOBBIX obacTsx JJIsA KBa3WJINHEHHBIX ypaBHeHI/If/’I HyaCCOHa
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Buna Au(z) = h(z) - f(u(z)) ¢ Temn ke nupeanosnoxernsivu 0 GYHKIMU h Kak BbIIIe JUIsS § U Helpe-
poiBEBIX dyHKnuii f : R — R, koropble amubo orpannyensl, 6o ¢ HeyObBaomum |f | ot  |t], Takux,
aro f(t)/t — 0 upu ¢t — co. Mbl TakKe IPUBOAUM 37€Ch NPUIOXKEHHsI K MaTeMaTHIeCKol (usuke,
KOTOpbIE OTHOCSITCS K 3aj1adaM juddy3un ¢ abcopdbiiueil, mia3Me U ropeHuio. B jornoinenue, Mbl pac-
cmarpuBaeM 3amady Jupuxie nys ypasuennit Ilyaccona B equnnanom xkpyre D C C ¢ npousBobHbIMEI
rpaHryYHbIMU JaHHBIMEU ¢ : 0D — R, KOTOpBIE M3MEPUMBI OTHOCUTEIHLHO JIOrapuMUIECKON EMKOCTH.
31ech MBI yCTAHABIMBAEM CYIIECTBOBAHUE HEKJIACCUIECKUX PEIIeHU 9TOi TpoOIeMbl B TEPMIHAX yT-
J10BBIX 1ipejiesioB B D 1.B. Ha O orHOCHTENBHO JIoraprudMIYECKOH €eMKOCTH C TEMU Ke JIOKAJIbHBIMU
CBOMiCTBAMHU Kak U Bbimre. HakoHel, MbI pacpoCTpaHsieM 9TU PE3Y/IbTaThl HA MOYTH TJIAJIKHE YKOPIa-

voBbl obnactu D B C ¢ kBazurnnepbomaecKuM rpaHuIHbIM yeaoBueM 1o [epuary—Mapruo.

Katoueswie caosa: 3adava Jupuzrae, keasusunetinvie ypasuenus Iyaccona, aozapudpmureckutd no-

menyuan, /LOZGPU&MU“‘L@CKJGJZ EMKOCMDb, Yen06dle npe(?e/wt.

B. I'yraaucekuii, B. Pazaunos, E. dky6GoB

3ana4ya dipuxise ajs piBusiab Ilyacona y >kopaaHoBux obJjiacTsx.

Ilepmr 3a Bce My BUBYaeMO 3aady lipuxie mysa pisusaub Ilyacona Au(z) = g(z) cg € LP, p > 1, Ta

HEIEePEPBHUMY IPAHUIHUME JaHuMu ¢ : 0D — R B noBlibaux K0ppanosux obiactax D C C ta moBo-

. . .. . . W2’p Kb c Wl'q
JIIMO iCHyBaHHsI HellepepBHUX pintens u uiel 3agaqi B kiaaci WP, KpiM nporo, u [
. . 1
g > 2 Ta u J0KaIpHO HemnepepsHi 3a enbaepom. Binbm Toro, u € C 0 3 a = (p — 2)/p, axwo p > 2.

JUISL JIESIKOTO

Ilorim, Ha miif ocHOBI, 3acTocoByroun minxin Jlepe-Illaynepa, Mu OTpUMyeMO aHAJIOTIYHI Pe3yIbTaTH
nyst 3ana4di lipuxiie 3 HenmepepBHUME I'DAHUYHUMUA JTAHAMU B JIOBUIBHUX >KOPJIAHOBUX OOJIACTSX IS
kBasliinifinux pisasHb [lyacona Buay Au(z) = h(z) - f(u(z)) 3 Tumu ke upuiyinesHsiMu 1po dyHKI
h sk Bume 11 g Ta HenepepsHux dyukuiit f : R — R, axi abo obmexeni, abo 3 necnaguum |f | Bizg
[t|, Takux, mo f(¢)/t — 0 npm ¢ — co. Mu TakoK HABOJUMO TYT JOJATKH JIO0 MATEMATHIHO! (hi3mkm,
K1 BiHOCATBCA 710 3aja49 audy3il 3 abcopbriiero, miaa3mi Ta ropinaio. Ha /10/1aT0K, MU PO3IIsi1aeMo
zagaay [lipuxse qisa pisasab [lyacona B oguananomy ko D C C 3 moBiibHUMY TPAaHUYHUME JAHUMUA
@ : 0D — R, aki BumipHi BigHOCHO JlorapudmivHol eMuoCTi. TyT MM BCTAHOBJIIOEMO iCHYBaHHSI HEKJIa-
CcUYHUX piniensb i€l npobemu y TepMminax KyTtoBux rpanuib y D m.8. Ha 0D BinnocHo Jsorapidmivaor
€MHOCTI 3 THMU K JIOKAJIbHUMHU BJIACTHUBOCTAMU $K i Buine. Hapemti, My mommpioemMo 1 pe3yiapraTu
Ha Maiizke rajki xopaanosi obsracti D B C 3 kBazirinepbosiunoro rpanndso0 yMoBoio 3a ['epurarom—
Maprio.

Karouwosi cnosa: 3sadava Jlipuxae, xk6asininiting pishannsa ITyacona, sozapudmivna emmicms, Kymo-

61 MEIHCU.
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