Доведено твердження про усереднення гіперболічної початково-крайової задачі, у якій коефіцієнт при операторі Лапласа залежить від просторової L²-норми градієнта розв'язку. Питання існування розв'язку цієї задачі досліджене С. I. Похожаєвим. У просторовій області в ℝⁿ, n ≥ 3, розглядається довільна перфорація, асимптотична поведінка якої в ємнісному сенсі описана гіпотезою Д. Чіоранеску - Ф. Мюра. Можливість усереднення доведено за припущенням деякої додаткової гладкості розв'язків граничної гіперболічної задачі з певним ємнісним стаціонарним потенціалом.
We prove a statement on the averaging of a hyperbolic initial-boundary-value problem in which the coefficient of the Laplace operator depends on the space L²-norm of the gradient of the solution. The existence of the solution of this problem was studied by Pokhozhaev. In a space domain in ℝⁿ, n ≥ 3, we consider an arbitrary perforation whose asymptotic behavior in a sense of capacities is described by the Cioranesku-Murat hypothesis. The possibility of averaging is proved under the assumption of certain additional smoothness of the solutions of the limiting hyperbolic problem with a certain stationary capacitory potential.