Наукова електронна бібліотека
періодичних видань НАН України

A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Kuniba, A.
dc.contributor.author Okado, M.
dc.contributor.author Yamada, Y.
dc.date.accessioned 2019-02-21T07:04:16Z
dc.date.available 2019-02-21T07:04:16Z
dc.date.issued 2013
dc.identifier.citation A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Function / A. Kuniba, M. Okado, Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 17B37; 20G42; 81R50; 17B80
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2013.049
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149342
dc.description.abstract For a finite-dimensional simple Lie algebra g, let U⁺q(g) be the positive part of the quantized universal enveloping algebra, and Aq(g) be the quantized algebra of functions. We show that the transition matrix of the PBW bases of U⁺q(g) coincides with the intertwiner between the irreducible Aq(g)-modules labeled by two different reduced expressions of the longest element of the Weyl group of g. This generalizes the earlier result by Sergeev on A₂ related to the tetrahedron equation and endows a new representation theoretical interpretation with the recent solution to the 3D reflection equation for C₂. Our proof is based on a realization of U⁺q(g) in a quotient ring of Aq(g). uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa. The full collection is available at http://www.emis.de/journals/SIGMA/InfiniteAnalysis2013.html. The authors thank Ivan C.H. Ip, Anatol N. Kirillov, Toshiki Nakashima and Masatoshi Noumi for communications. They also thank one of the referees for drawing attention to the references [9, 26]. This work is supported by Grants-in-Aid for Scientific Research No. 23340007, No. 24540203, No. 23654007 and No. 21340036 from JSPS. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title A Common Structure in PBW Bases of the Nilpotent Subalgebra of Uq(g) and Quantized Algebra of Functions uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис