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Abstract. For a finite-dimensional simple Lie algebra g, let U(;r (g) be the positive part of
the quantized universal enveloping algebra, and A,(g) be the quantized algebra of functions.
We show that the transition matrix of the PBW bases of U,/ (g) coincides with the intertwiner
between the irreducible A,(g)-modules labeled by two different reduced expressions of the
longest element of the Weyl group of g. This generalizes the earlier result by Sergeev
on A, related to the tetrahedron equation and endows a new representation theoretical
interpretation with the recent solution to the 3D reflection equation for C5. Our proof is
based on a realization of U, (g) in a quotient ring of A,(g).
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1 Introduction

Let g be a finite-dimensional simple Lie algebra and U,(g) be the Drinfeld-Jimbo quantized
enveloping algebra. U,(g) has the subalgebra U; (g) generated by the Chevalley generators
e1,...,en (n =rankg) corresponding to the simple roots. Denote by W = (s1,..., s,) the Weyl
group of g generated by the simple reflections s1, ..., s,. It is well known (see for example [15])
that for each reduced expression wy = s;, - - - 5;, of the longest element wg € W, one can associate
the Poincaré-Birkhoff-Witt (PBW) basis of U, (g) having the form

EIA = 6(6(11)6(522) cee egl”), A= (al, ceey al) S (Zzo)l,

where eg:i)’s are the divided powers of the positive root vectors determined by the choice i =
(41,...,1;). See Section 2.2. Let {EJA | A e (ZZO)Z} with j = (j1,-..,/1) be another PBW basis
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collection is available at http://www.emis.de/journals/SIGMA /Infinite Analysis2013.html
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associated with a yet different reduced expression wy = s, - - - s;. Following Lusztig [14], one

expands a basis in terms of another as

EiA: Z VgEJ'B
BG(ZZ())[

B

and obtains the transition coefficient 'yg uniquely. We have suppressed its dependence on i, j in
the notation. Many remarkable properties are known for fyg‘ including the fact ’yg € Z[q]. See
[14, Proposition 2.3] for example.

In this paper we show that the transition coefficients v = (’yﬁ) coincide with the matrix ele-
ments of the intertwiner between the irreducible A,(g)-modules labeled by two different reduced
expressions of the longest element of the Weyl group of g. Here A,(g) denotes the quantized
algebra of functions associated with g. It is a Hopf subalgebra of the dual U,(g)* which has
been studied from a variety of aspects. See [5, 11, 17, 18, 21, 22, 23] for example. Let us briefly
recall the most relevant result to the present paper due to Vaksman and Soibelman [21, 22, 23].
To each reduced expression of a (not necessarily longest) element w = s;, ---s;, € W, one can
associate an irreducible representation 7 labeled by i = (i1, ...,4,) having the form

=T Q- @m, 1 Aglg) = End(]—“qi1 ®"'®‘7:%)7

where each component 7; : A4(g) — End(Fy,) is the fundamental representation of A,(g) on the
g-oscillator Fock space Fy, = @,,~, C(q)|m). See Section 4.1. The two irreducible representa-
tions 7; and mj with j = (j1,...,jr) are isomorphic if s;, -+ s;, = s, -+ 55, € W are reduced ex-
pressions (Theorem 4). Thus one has the intertwiner ® = ®;5: Fy, ®---QFy, — Fy, ®--@F,
characterized by

mi(g) o ® = Pom(g) Vg€ Ayg)

up to an overall constant. Writing the basis of the Fock space Fy, ® --- ® Fy, as |[A) =
la1) ® - -+ ® |a,) with A = (a1,...,a,) € (Z>0)", we define the matrix elements of ® = (®4) by
®|B) =" , ®4|A) and the normalization @8:::::8 = 1. Our main result (Theorem 5) is concerned
with the longest element case r = [ and is stated for each pair (i,j) as ’yé = @g, ie.,

v=2. (1)

For a convenience we also introduce the “checked” intertwiner ® = ® o o, where o(|a;) ® -+ ®
la;)) = |a;) ® -+ ® |a1) is the reversal of the components.

Our work is inspired by recent developments in 3-dimensional (3D) integrable systems related
to rank 2 cases. Recall the Zamolodchikov tetrahedron equation [27] and the Isaev—Kulish 3D
reflection equation [8]:

Ras6Roa6 145 R123 = R123R145R246 R356, (2)
Ry56 Rag9 K3579 Rogo Ross K1678 K 1234 = K1234 K 1678 Ro58 R269 K 3579 489 Rase .- (3)

They are equalities among the linear operators acting on the tensor product of 6 and 9 vec-
tor spaces, respectively. The indices specify the components in the tensor product on which
the operators R and K act nontrivially. They serve as 3D analogue of the Yang—Baxter and
reflection equations postulating certain factorization conditions of straight strings which undergo
the scattering R and the reflection K by a boundary plane.

For g = Ay, Kapranov and Voevodsky [10] showed that R = ®" € End(FJ?) provides
a solution to the tetrahedron equation (2). Moreover it was discovered by Sergeev [20] that the
solution of the tetrahedron equation R in [2] (given also in [10] with misprint) is related with the
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transition matrix as ¥ = R o o. Thus the equality (1) for g = Ay is a corollary of their results.
Apart from the As case, it has been shown more recently [13] that K = ®V for g = Oy yields
the first nontrivial solution to the 3D reflection equation (3). See also [12] for g = By. These
results motivated us to investigate the general g case and have led to (1). It is our hope that
it provides a useful insight into higher-dimensional integrable systems from the representation
theory of quantum groups.

The layout of the paper is as follows. In Section 2, we summarize the definitions of U,(g) and
PBW bases. In Section 3, we recall the basic facts on A,(g) following Kashiwara [11]. A funda-
mental role is played by the Peter—Weyl type Theorem 1. The relation with the Reshetikhin—
Takhtadzhyan—Faddeev realization by generators and relations [18] is explained and its concrete
forms are quoted for A,,, C), and G2 [19] which will be of use in later sections. The construction
of a certain quotient ring A,(g)s of A4(g) and the special elements o; € Ay(g) (Definition 1)
and & € Ay(g)s (36) will play a key role in our proof of (1). In Section 4, we briefly review the
representation theory of A4(g) in [21, 22, 23] and sketch the intertwiners for the rank 2 cases.
Section 5 is devoted to the proof of the main theorem v = ®. It reduces to the rank 2 cases
and is done without recourse to explicit formulae of v or ®. Our method is to identify their
characterizations under the correspondence e; — &;. Actually, this map extends to an algebra
homomorphism Uq+ (g) — A4(g)s for general g as shown by Yakimov [26]. We give a direct proof
of a part of his results in Section 6.

2 Quantized enveloping algebra U,(g)

2.1 Definition

In this paper g stands for a finite-dimensional simple Lie algebra. Its weight lattice, simple
roots, simple coroots, fundamental weights are denoted by P, {«;}icr, {hi}ticr, {wi}icr where
I is the index set of the Dynkin diagram of g. The Cartan matrix (ai;); jer is given by a;; =
(hi, o) = 2(aui, o) / (i, ).

The quantized enveloping algebra U,(g) is an associative algebra over Q(gq) generated by
{ei, fi, k' | i € I} satisfying the relations:

kikj = kjk;, kik7t =k =1,

— hi,a — —(h,a; k’L - k;l
kiejk; b= qz'< ]>€ja ki fik; t= q; < J>fj7 [eiyfj] = 5z'jﬁ>
lfaij 170,1']'
r (r l—a;j—r rp(r l1—ai;j—r . .
S yelegel T = Sy O T T =0, i (4)
r=0 r=0
Here we use the following notations: ¢; = ¢(®®)/2 [m]; = (qim—qi_m)/(qi—qi_l), n)i' = 11 [m],

m=1
(

ein) = e’ /[n]!, fi(") = fI'/[n];!. We normalize the simple roots so that ¢; = ¢ when «; is a short
root. Uy(g) is a Hopf algebra. As its comultiplication we adopt the following one

A(ki) = k; @ ki, Ale;)) =€, @1+ ki ® ey, Alf)=fiok ' +1® fi.

2.2 PBW basis

Let W be the Weyl group of g. It is generated by simple reflections {s; | ¢ € I} obeying the
relations: s? = 1, (s;s;)™4 = 1 (i # j) where m;; = 2,3,4,6 for (h;, a;)(h;,c;) = 0,1,2,3,

)

respectively. Let wg be the longest element of W and fix a reduced expression wg = s;,8;, = - - 5,
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Then every positive root occurs exactly once in
Br=qi, P2=siy(a), ..o Bi=si8i- 8 ().
Correspondingly, define elements eg, € Uy(g) (r=1,...,0) by
eg, = TiyTiy -+ Ti,_, (€3,)- (5)

Here T; is the action of the braid group on U,(g) introduced by Lusztig [15]. It is an algebra
automorphism and is given on the generators {e;} by

—a;;

n(ez) = _szza ﬂ(ej) — Z(_l)rqzrel(’f’)ejel(—az]—r)’ i # ]
r=0

U,(g) has a subalgebra generated by {e; | i € I}, denoted by U, (g). It is known that
ep, € U/ (g) holds for any r. U (g) has the so-called Poincaré-Birkhoff-Witt (PBW) basis.
It depends on the reduced expression s;, S;, - - - i, of wp. Set i = (i1,12,...,4;) and define for
A= (al, ag, ... ,CL[) S (Zzo)l

®

Then {E{* | A € (Zx)'} forms a basis of U, (g). We hope that the notations e;, with i, € I
and eg, with a positive root 3, can be distinguished properly from the context. In particular

ar m__,,—m i
G(BC:T) = (eﬁ,.)ar/ Hl % Wlth p’l” — q(/B'mﬁr)/Q
m=

3 Quantized algebra of functions A,(g)

3.1 Definition

Following [11] we give the definition of the quantized algebra of functions A4(g). It is valid
for any symmetrizable Kac-Moody algebra g. Let Oy (g) be the category of integrable left
U,(g)-modules M such that, for any u € M, there exists [ > 0 satisfying e;, - - - ¢;;u = 0 for any
i1,...,0; € I. Then Ojn(g) is semisimple and any simple object is isomorphic to the irreducible
module V() with dominant integral highest weight A. Similarly, we can consider the category
Oint (g°PP) of integrable right U,(g)-modules M" such that, for any v € M", there exists [ > 0
satisfying vf;, --- fi, = 0 for any 41,...,4; € I. Oin(g°PP) is also semisimple and any simple
object is isomorphic to the irreducible module V" (\) with dominant integral highest weight .
Let uy (resp. vy) be a highest-weight vector of V' (A) (resp. V"(A)). Then there exists a unique
bilinear form (, )

VA @ V(A) = Q)
satisfying
(vx,up) =1 and (vP,u) = (v, Pu) for ve V"(A), ueV(X), PeUg).

Let Uy(g)* be Homgg) (Uy(g), Q(g)) and (,) be the canonical pairing between U,(g)* and
Uq(g). The comultiplication A of U,(g) induces a multiplication of U,(g)* by

(o', P) = (p® ¢, A(P))  for P € Ug), (7)
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thereby giving U,(g)* the structure of Q(g)-algebra. It also has a Uy(g)-bimodule structure by
(zpy, P) = (p,yPz)  for z,y, P € Uy(g). (8)
We define the subalgebra A,(g) of Uy(g)* by

Aq(g) = {¥ € Ug(9)*; Uy(g)p belongs to Oing(g) and oU,(g) belongs to O (g°PP) },

and call it the quantized algebra of functions.
The following theorem is the g-analogue of the Peter—Weyl theorem. See e.g. [11] for a proof.

Theorem 1. As a Uy(g)-bimodule Ay(g) is isomorphic to @, V" (A) @ V(X), where X runs over
all dominant integral weights, by the homomorphisms

Uy: VA @V(A) = Ay(g)
given by
(¥r(v®u), P) = (v, Pu)
forve VT'(A), ue V(A), and P € Uy(g).

Let us now assume that g is a finite-dimensional simple Lie algebra. Then A,(g) turns out
a Hopf algebra. See e.g. [9, Chapter 9]. Its comultiplication is also denoted by A.

Let R be the universal R matrix for U,(g). For its explicit formula see e.g. [4, p. 273]. For
our purpose it is enough to know that

R e ) B Uz @ U] )-p, (9)
BeQt
where ¢("t %) is an operator acting on the tenor product uy ® u,, of weight vectors uy, u, of

weight A, by g™ W) (uy @ uy,) = ¢Muy @ uy, Qr = @; Zso, and (U(;t)i@ is the subspace
of qu(g) spanned by root vectors corresponding to £4.

Fix A, let {ug\} and {v}'} be bases of V(\) and V"()\) such that (vf‘,u?‘) = 4,5, and gog\j =
Uy\(v} @ uJA) Let R be the so-called constant R matrix for V(A) ® V(u). Denoting the homo-
morphism Uy(g) — End(V (X)) by 7, it is given as

R (my®@m,)(0R), (10)

where o stands for the exchange of the first and second components. The scalar multiple is
determined appropriately depending on g. The reason we apply o is that it agrees to the
convention of [18]. R satisfies

RA(z) = A'(z)R  for any = € Uy(g),

where A’ = 0o A. Define matrix elements R;;x; by R(up ®@ul') = >ij Rijpu} ®u§-‘. Define the
right action of R on V"(A)@V" () in such a way that (v} @v}) R, up@ul’) = (v} v}, R(up@uf'))
holds. Then we have (v} ® VIR =3 Rjj vy @ vl'. From

Z Rijmp(‘Pr)v\@kSDgza T) = ZRij,mp<S0;\nk ® @Zp A(z)) = ZRij,mp(Ui\n ® vp, A(:U)(uﬁ ®uy'))
m7p

m?p m7p

— (v} @ )R, A(2) () ® uf)) = (v} © ¥, RA(2) (1} © uf))
= 30 @ o, A () (), @ u)) R
m7p
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Z (v @ v}, Ax) (ulf @ up,)) Ry i

A
- Z QOJp ® szmv ( )>Rmp,kl = Z<¢?p<pim7x>Rmp,kl

m7p
for any x € Uy(g), we have
Z Rij,mp@?\nkSogl = Z ¢7p90z‘)\mRmp,kl‘ (11)
m?p m7p

We call such a relation RTT relation.

3.2 Right quotient ring A,(g)s

For later use we require a certain right quotient ring of A,(g) by a suitable multiplicatively
closed subset S. We first review the general construction from [16, Chapter 2.

Let R be a noncommutative ring with 1 and § a multiplicatively closed subset of R. The
following condition is called the right Ore condition:

(Ore) Forany r € R, s € S, rSNsR # @.
Set

assS = {r € R|rs =0 for some s € S}.

Then under the right Ore condition assS turns out a two-sided ideal. Let ~ : R — R/assS
denote the canonical projection. Suppose

(reg) S consists of regular elements, namely, elements x such that both zr = 0 and ra = 0 imply
r=0.

Then a theorem in [16, Chapter 2| states

Theorem 2 (Theorem 2.1.12 of [16]). The right quotient ring Rs exists, if and only if (Ore)
and (reg) are satisfied.

By passing to the images by —, it suffices to consider the case when assS = 0, and then
elements of Rg are of the form r/s. For r;/s; € R/S (i = 1,2) the addition and multiplication
formulae are given by

r1/81 + 1ro/sy = (riu+ rou)/(s1u), (r1/s1)(ra/s2) = (r1v")/(s2v), (12)

where u, v/, v, v' are so chosen that s;u = sou’ (u € S,u’ € R), rov = 510" (v € §,v' € R).
Let us return to our case where R = A,(g).

Definition 1. For any i € I, let uy,w, (resp. vw,;) be a lowest (resp. highest) weight vector of
V(w;) (resp. V"(w;)). Set

o; = Ve, (UW ® uwowz')-

The following proposition is proven in [9]. However, we dare to prove again, since conventions
might be different.

Proposition 1 (Corollary 9.1.4 of [9]). Let ), be an element of Ag(g) such that kipy, =

< ““)go,\u, Oxuki = qf >cp/\u for any i € I. Then the following commutation relation holds:

wi,A)

T Naipr, = ¢TI oy 0.

In particular, 0,05 = oj0; for any i, j.
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Proof. Without loss of generality one can assume ¢y, = ¥, (v\ ® u,) for some v,vy € V"(v),
uy, € V(v) such that ku, = q<hi’“>uu, vak; = q<hi’/\>

% 7

vy. In view of (9), (10) we have
R(UWowi ® u#) = q(wOWi#)uwowi ® Uy, (vwi ® ’U,\)R = q(Wi7/\)Uwi & V.

Then (11) implies the commutation relation. The second relation follows from the first one,
since (wz,wz) = (wowi,wowi). |

Let n be the rank of g and define
S = {0'11711"'0':?" |m1,...,mn EZzo},
which is obviously multiplicatively closed subset of A,(g).

Lemma 1. Let s be a nonzero element in Im )y satisfying fis = sfi = 0 for any i € I. Then
s € Q(q)% o1 - apn where Q(g)* = Q(q) \ {0} and \; = (hy, \).

Proof. By (7), (8) fio}---op" = a7t --- o) fi = 0 for any i and 07" - -- o belongs to Im ).
By Theorem 1 such an element is unique up to an element of Q(g)*. |

In particular o; is characterized as the unique element (up to an overall constant) in Im ¥,
such that fjo; = o;f; = 0 for all j € I. We remark that Theorem 1 implies that if a nonzero
element ¢y , € Ay(g) satisfies the assumption of Proposition 1 and fjpy , = @i uf; = 0 for all j,
then A = wou must hold.

In [9] it is shown that A,(g) is an integral domain (Lemma 9.1.9), hence (reg) is satisfied, and
that (Ore) is also satisfied (Lemma 9.1.10). Therefore we have the following theorem. (A proof
is attached for self-containedness.)

Theorem 3. The right quotient ring A,(g)s exists.
Proof. In view of Theorem 2 it is enough to show that

(1) if ¢ # 0, then ¢s # 0 for any s € S,
(1") if ¢ # 0, then sp # 0 for any s € S, and
(2) the right Ore condition is satisfied,

since (1) implies ass S = 0, then (1) and (1’) imply S = S consists of regular elements.

Let us prove (1). Let ¢ = > . ¢; be the two-sided weight decomposition. If ¢;s # 0 for
some j, ¢s # 0 since the weights of ¢;s are distinct. Hence we can reduce the claim when ¢ is
a weight vector. Suppose ¢ = Zu ©u, pp € Im V¥, and let A be a maximal weight, with respect
to the standard ordering on weights, such that ¢y # 0. Choose sequences i1, ..., and ji,...,J
such that f;, --- fi,oxfj, - -+ fj, turns out a left-lowest and right-highest weight vector. Then by
Lemma 1 it coincides with ¢s’ with some ¢ € Q(q)*, s’ € S. Then

flkfu(gps)fjlf]z :C/SIS+"'

with another ¢ € Q(¢)*. By the maximality of A the remaining part +--- in the right-hand
side does not contain the terms with the same two-sided weight. Hence - -- = 0. Therefore, the
left-hand side is not 0 and we conclude ps # 0.

(1) is similar. For (2) we can reduce the claim when ¢ is a weight vector, and in this case
the claim is clear from Proposition 1. |
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3.3 Realization by generators and relations

We consider the fundamental representation V(w) of Uy(g) for g = Ap,—1,Cp,Ga. Set N =
dim V(wy). It is known [5, 18] that A,(g) for g = A,—1,Cp, G2 is realized as an associative
algebra with appropriate generators (;;)i<ij<n corresponding to V" (wi) ® V(w) satisfying
RTT relations

Z Rij,mptmktpl = Z tjptimRmp,kla (13)
m?p m7p

and additional ones depending on g. See below for each g under consideration. In all cases,
there exists a comultiplication A : A4, — A, ® A, given by

A(tij) = Ztik X tkj- (14)
k

3.3.1 A, _1 case

We present formulae for Ag(A,—1). In this case N = n. Let u; and v; be the highest-weight
vectors of V(wi) and V" (w) such that (vi,u1) = 1 and set u; = fj—1fj—2-- fiwr, v; =
viejeg - -ej_1 for 2 < j < n. Then the constant R matrix is given by

Z Rij,klEik ® Ejl = quii ® Ey; + ZE” ® Ejj + (q — q_l) Z Eij X Ej’ia
okl i i# i>j
where Ej; is the matrix unit. Define t;; = ¥, (v; ® uj). Then the RTT relations among
(tij)1<ij<n read explicitly as follows

i 1] = 0, 1< 73, k>1,
R (q - qil)tjktih 1 < j7 k< l7

tiktjk = qtjrti, 1 <J, tkitky = Qtrjtei, 1< J.

In A, _1 case we need another condition that the quantum determinant is 1, i.e.,
Z (_Q)é(g)tlzn o 'tnan = 17
ceS,

where &,, = W(A,_1) is the symmetric group of degree n and /(o) is the length of o.
According to Definition 1, we have o1 = t13 and oy = t12t23 — gtoot13. As an exposition, we
note that o;e; in (39) is derived from
<0161,P> = <t13€1,P> = (1)161,PU3) = (UQ,PU3) = (tgg,P>,
(o2e2, P) = ((t12 ® taz — qtao @ t13)Ale2), A(P)) = (ti2ka ® tazez — qlazes ® t13, A(P))
= (t12 ® t33 — gtz ® t13, A(P)) = (tiatss — gtstas, P)

for any P € Uy(Az). See e.g. [17] for an extensive treatment.

3.3.2 C(C,, case

We present formulae for A,(Cy). In this case N = 2n. Let u; be the highest-weight vector
of V(w1) and define u; for 2 < j < 2n recursively by uji1 = fju; (j < n), —fon—ju; (5 > n).
Let {v;} be the dual basis to {u;} in V"(w1), namely, {v;} are determined by (v, u;) = 6.
Then the constant R matrix is given by

> RijmEx®Eji=qY Ei®Ei+ Y Ei®Ejj+q 'Y Ei®Epy
i.gik.l i i#j.5" i
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+(g—q7") Z E;j®Eji—(q—q") Z €i€jq% Y Eij @ By,

i>7 i>7
i =2n+1—1, =1 1<i1<n, e =—1, n<i<2n,
(01,...,0m)=(Mmn—-1,n—-2,...,1,0,0,—1,...,—n + 1).

Define t;; = ¥, (v;®u;). The RTT relations are given by (13) with the above R;; ;. Additional
relations are given by

> CirCumtijtie = Y CijCrititim = —0im,  Cij = 6 jreiq®.
j7k7l j7k7l
3.3.3 G4 case

We have N = 7 in this case. We adopt the basis {u;} of V(w;) that has the representation
matrices given as in [19, equation (29)], and let {v;} the dual basis in V" (w;). Define t;; =
Vo (vs ® uj). Then Aq(Ge) is generated by (t;j)1<s j<7 satisfying (i) and (ii) given below.

(i) RTT relations (13) with the structure constants specified by R;j i = Rijkl in [19, equa-

tion (33)].
(ii) Additional relations
g7 = tutiug™, D Fhtem =Yttt (15)
k,l k kil

where ¢/ and fi],‘C are given by [19, equations (30), (31)].

The relations [19, equations (20), (22)] are equivalent to (15) if the RT'T relations are imposed.
See the explanation after [19, Definition 7]. Note also that we use the opposite indices of the
Dynkin diagram to [19].

4 Representations of A,(g)

4.1 General remarks

Let us recall the results in [22, 23] on the representations of A,(g) necessary in this paper.
Consider the simplest example A,(A;) generated by t11, t12, t21, t2o with the relations

t11t21 = qto1t11, t12t22 = qtoaty2, t11t12 = qti2t11, to1too = qtaotor,

[ti2,t21] =0, [ti1,t22] = (¢ — ¢ Vtartro, titee — qtiglor = 1.
Let Osc, = (a™,a™, k) be the g-oscillator algebra, i.e., an associative algebra with the relations
ka® = qa'k, ka  =¢ 'a’k, a"at =1 - %2, ata  =1-Kk% (16)
It has a representation on the Fock space 7, = ,,~o C(q)|m):
kjm) =¢"|m),  a*lm)=|m+1), a’|jm)=(1-¢")|m~1). (17)

In what follows, the symbols k, a*, a~ shall also be regarded as the elements from End(F,). It
is easy to check that the following map 7 defines an irreducible representation of A,(A1) on Fy:

t11 12 pma” ok
<7521 7522) ~ (qa_lk M_la+) ’ (18)

where o, u are nonzero parameters.
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Theorem 4 ([22, 23]).

(1) For each vertex i of the Dynkin diagram of g, Aq(g) has an irreducible representation m;
factoring through (18) via Ay(g) — Aqg,(slas). (sla; denotes the sly-subalgebra of g asso-
ciated to 1.)

(2) Irreducible representations of Aq(g) are in one to one correspondence with the elements of

the Weyl group W of g.

(3) Let w = sy, ---s; € W be an reduced expression in terms of the simple reflections. Then
the irreducible representation corresponding to w is tsomorphic to m;, & -+ ® ;.

Actually the assertions (2) and (3) hold up to the degrees of freedom of the parameters a, p
n (18). See [22] for the detail. We call m; (i = 1,...,rank g) the fundamental representations.
For simplicity we denote m;;, ® --- ® m;, by m;, .. -

A crucial corollary of Theorem 4 is the following:

If s ---s5, = s, ---sj € W are reduced expressions, then m;, _; >~ .

In particular, there exists the isomorphism ® : 7y, ®---®Fq, — Fg; @---®F; characterized
(up to an overall constant) by

Ti,.g(g)o®=®om, i(9)  Vge Aylg).

Here 7, ;,(g = tij) for example means the tensor product representation Zm,---,m_l iy (Liry ) @
-+ @ my(tr,_,,;) obtained by the (I — 1)-fold application of the coproduct (14).
Elements of the Fock space |m1) ® -+ ® |my) € Fy; ® -+ ® Fy; will simply be denoted
by |mi,...,my). We will always normalize the intertwiner by the condition ®|0,0,...,0) =
|0,0,...,0). The exchange of the ith and the jth tensor components from the left will be denoted
by P;j. In the remainder of this section we concentrate on A,(g) of rank 2 cases g = Az, Cs
and G9, and present the concrete forms of the fundamental representations, definition of the

intertwiners with a few examples of their matrix elements.

4.2 A, case

Let T' = (tij)1<i j<3 be the 3 x 3 matrix of the generators of A,(Az). The fundamental repre-
sentations 7; : Ay(A2) — End(F,) (¢ = 1,2) are given by

nia a1k 0 1 0 0
m(T) = | —ga7'k pita™ 0}, m(T)= 10 pa~ ask |, (19)
0 0 1 0 —qay'k puytat

where «;, ; are nonzero parameters.
The Weyl group W = (s1, s2) is the Coxeter system with the relations

s% = s% =1, $18981 = S951S9.

Thus we have the isomorphism 7191 =~ me12. Let ® be the corresponding intertwiner and denote
by R the checked intertwiner ®V explained after (1)

7T121(I) = (1371'212, 7T121R = R?Tém, 77512 = P137T212P13, R = (I)Plg S End(}"(?:g).

For example 715(ti;) = >y m2(t1,7) ® m1(tk1) ® ma(tix). Define the matrix elements of R and
its parameter-free part R by

.. abc abc __ a j+k b—a—kmpabe
R|Z,], ZRUk|a b C Rzgk - Ho Rzgk

a,b,c
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Then the following properties are valid for R = (R¢) [13]:

ijk
9%?;’,5 € Z[q], R%blg =0 unless (a+b,b+c)=(i+j,7+k), (20)
2Y.(02): (g2 .
R — R, ?bc — chb%’ ;Lbc _ (q )Z(q )](q )kfRUk, 21
gk kj & (@) alq)(g?). abe (21)
qu:]blg|q:0 = 5i,b+(afc)+5j,min(a,c)6k,b+(cfa)+ . (22)

a
Here (¢®)s = [ (1 —¢*™) and (y)+ = max(0,y). Due to (20), R is the infinite direct sum of
m=1

finite-dimensional matrices. An explicit formula of Rg}’,ﬁ was obtained in [10] (unfortunately with
misprint) and in [1, equation (59)] (in a different context and gauge including square roots). The
formula exactly matching the present convention is [13, equation (2.20)]. The R satisfies [10]
the tetrahedron equation (2).

Example 1. The following is the list of all the nonzero RY:

Rt =—a*(1—q") (1 = ¢°) (1 = ¢°),

R =0-¢")1-¢*)(1-¢"—¢"—¢*—¢"),
R = (1+°) (1 +¢*)(1—¢%) (1 — ¢ —¢"),
RN =1+ +qd" - — " — ¢ = ¢"),

405 _ 12
R3ii=q".

Thus R%S|,—0 = 64,10p30c2 in agreement with (22).

4.3 C5 case

We have (q1,q2) = (¢,¢%). Let T = (t;j)1<i j<4 be the 4 x 4 matrix of the generators of A,(C2).
We use Osc,z = (A*, A7, K) in addition to Oscq = (a*,a,k) (16). The fundamental repre-
sentations m; : A4(C2) — End(F,) (i = 1,2) are given by

pia~ a1k 0 0
w1(T) = —qozl_lk ,u1_1a+ 0 0
= 0 0 ma-  —aik |’
0 0 gy 'k ptat
1 0 0 0
0 ,MQA_ asK 0
2 (T) = 0 _q2a2—1K H2_1A+ 0 ) (23)
0 0 0 1

where «;, i; are nonzero parameters.
The Weyl group W = (s1, s9) is the Coxeter system with the relations

s% = sg =1, S$95818981 = S15951592.

Thus we have the isomorphism 7121 >~ m1212. Let ® be the corresponding intertwiner and denote
by K the checked intertwiner ®V

m2121P = Pmi212, To121 K = K91, To191 = PraPasmioi2PraPos,
K =®P4P3 € End(]:qz & fq & fq2 & .Fq).
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Define the matrix elements of K and its parameter-free part X by

.. C abc c—k abc
Kli,j k)= > K@la,b,e,d), K5l = i ph 7 ocabed,

P
a,b,c,d

Then the following properties are valid for X = (biﬁld) [13]:

K“de Zlql, chf,g;i_o unless (a+b+c,b+2c+d)=(+j+k,j+2k+1), (24)

Kxl=x gabed _ (q4)i(q2)j(q4)k(q2)l ijkl
’ IR (@)ala®)n(a (@)

K lg=0 = 01005 Okt (26)

d=z+a+b—d, V =c+d—z—min(a,c+z),

¢ = min(a, c+ ), d=b+(c—a+z)y, r=(c—a+(d—b)4).

(25)

Due to (24), X is the infinite direct sum of finite-dimensional matrices. An explicit formula of
K?bﬁld is available in [13, equations (3.27), (3.28)]. This X and R in Section 4.2 satisfy [13] the
3D reflection equation (3).

Example 2. The following is the list of all the nonzero K2%5%:

K330 = a* (1 — %),

K30 = —a* (1 — ¢® + ¢"*),

K330 = —q (1 +¢)(1-¢*+¢* —¢® — ¢"),
Ko =1—¢*+q"

K% = -1 —q+¢*)(1+q+4d°),

4003 __ 4
fK2110 =q .

Thus TKSS’% q=0 = 0a,30p00¢,104,1 in agreement with (26).

4.4 G4 case

We have (q1,q2) = (q,¢%). Let T = (t;;)1<i,j<7 be the 7 x 7 matrix of the generators of A,4(G2).
We use Osc,s = (A+, A7, K) in addition to Osc, = (a*,a,k) (16). The fundamental repre-
sentations 7; : Aq(G2) — End(F,) (i = 1,2) are given by

nia a1k 0 0 0 0 0
—gay 'k pytat 0 0 0 0 0
0 0 (,ula_)Q [2]10&1#11{&_ (Oélk)2 0 0
m(T) = 0 0 —qal_l,ula* k a“at — k2 al,ul_lk at 0 0 ,
0 0 (q0;'k)? —[2li(caim)kat (pylat)? 0 0
0 0 0 0 0 pa- ark
0 0 0 0 0 —qay kpytat
1 0 0 0 0 0 0
0 /,LQAi as K 0 0 0 0
0 —¢ay'K py'AT 0 0 0 0
m(T) = |0 0 0 1 0 0o of, (27)
0 0 0 0 A~ wK 0
0 0 0 0 —¢®ay'K uy'AT 0
0 0 0 0 0 0 1

where «;, y; are nonzero parameters and [2]; = ¢ + ¢~! as defined after (4).
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The Weyl group W = (s1, s2) is the Coxeter system with the relations
2 _ 2 _ _
§1 = SS9 = 1, 5951828158281 = S815251525152.

Thus we have the isomorphism ma19121 =~ 7121212. Let ® be the corresponding intertwiner and
denote by F the checked intertwiner ®V

212121 P = Pmi21212, m12121F = Frh10101, Th19191 = P16Pas Psami21212 P16 Pos Psa,
F = (I)P16P25P34 c End(]:q3 X Fq & ]:qs ® fq &® .Fqs ® fq) (28)

Define the matrix elements of F' and its parameter-free part F by

Fli,j, k,l,m,n) Z Fl 10 b e d, e, f),

ijklmn
a,b,e,de,f
abcdef _  3c—3k+d—1+3e—3m  2k—2c+l—d+3m—3e+n—f abcdef
Fzgkzmn =k Mo ?;ljklmn

Then the following properties are valid for F = (?adeef ):

ijklmn

bede

St?‘]klm‘{l, € Zlq),
+b+2c+d+e i1+7+2k+14+m

?abcdef -0 1 a — 29

ijkimn TS by 3c+2d 43¢+ f j43k+243m+n (29)

6\ .(2).(,0 2 6 2 ..

?,1 _ 35’ bedef (q )l(q )](q )k(q )l(q )m(q )n jklmn (30)

kMR (46) 4 (q2)(0%) e (q2) a(q)e (q2) § ~ bedes

Due to (29), F is the infinite direct sum of finite-dimensional matrices. The formula for
bede f
ijklmn

Although a tedious algorithm can be formulated for calculating any given grabed

l|q=0 can be deduced by the ultradiscretization (tropical form) of [3, Theorem 3.1(c)].
by using (28),

zyklmn
an explicit formula for it is yet to be constructed.
Example 3. The following is the list of all the nonzero 3"811]861%{:
00200 _ 4 2
oo =¢'(1-a*)(1-¢—q¢*—¢ )
000%01 = —aq(1— ¢ )(1—q —¢* + ¢ +4'9),
10010 _
o100t = —q(1—*) (1= ¢ —¢* +¢* +¢"),
ototor = 1—2¢° +2¢° + 3q —2¢" —2¢" — ¢",
s = ¢* (-2 +2¢° + ¢* + ¢'),
100011 2 6 8
Foroiot = —a* (1 —¢*) (1 — ¢ — ¢%),
Fotor0r =a(1— ¢ —¢* — ¢® + ¢ + ¢ + ¢*),
200004 __ 4
Foto101 = 4
Foroor =q(1—a+ ") (1+q+¢*) (1 - — ¢°).
5 Main theorem
In this section we fix two reduced words i = (i1,...,%), j = (j1,-...,j;) of the longest element

wo € W.
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5.1 Definitions of ’yg and (I’é

In the U,(g) side, we defined the PBW bases E{!, EjB of U, (g) in Section 2.2. We define their
transition coefficient ’yg by

B} =Y ypE].
B
While, in the Ay(g) side, we have the intertwiner ¢ : Fy, ®-- ‘®Fg, = Fg;, @ -QF; satistying

mj(g) o ® = P omi(g) Vge Ayg). (31)

We take the parameters p, « in (18) to be 1. This in particular means for rank 2 cases that
Wi, o entering m;(T) in (19), (23) and (27) are all 1. The intertwiner ® is normalized by
®(0,0,...,0) = [0,0,...,0). Under these conditions a matrix element ®4 of ® is uniquely
specified by

o[B) = Y @4lA),
A

where A = (ay,...,a;) € (Zso)! and |A) = |a1) ® -+ @ |@;) € Fq;, @ -+ @ Fg;, and similarly for
|B) € Fy,, ® -+ ® Fy, . Then our main result is

Theorem 5.
Vg = 3.

For any pair (i, j), from i one can reach j by applying Coxeter relations. In view of the
uniqueness of v and ® and the fact that the braid group action 7; is an algebra homomorphism,
the proof of this theorem reduces to establishing the same equality for all g of rank 2. This will
be done in the rest of this section.

5.2 Proof of Theorem 5 for rank 2 cases

In the rank 2 cases, there are two reduced expressions s;, ---s;, for the longest element of the
Weyl group. Denote the associated sequences i = (iq,...,4;) by 1, 2 and set 1’ = 2, 2 = 1.
Concretely, we take them as

A2 1= (1727 1)? 2= (27 172)? (qla(.IZ) = (Q7q)7
02 : 1= (1727 172)7 2= (27 1727 1)7 (QhQQ) - (Q7q2)7
G2 : 1= (1727 1727 172)7 2= (27 1727 1727 1)7 (QhQQ) = (Q7q3)7

where ¢; defined after (4) is also recalled. In order to simplify the formulae in Section 5.3, we
use the PBW bases and the Fock states in yet another normalization as follows:

1

A = diyay - diga )y dia=q; "IN = (1)) (32)

)

B = (! [l DES = e e,

where A = (ay,...,a;). See after (4) for the symbol [a];!. eg, is defined in (5). Accordingly we
introduce the matrix elements ’yé and @g by

B = SAAER, o)=Y édla), -1z
B A
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! 1
It follows that v4 = ¥4 kl:[l([bk]ik!/[ak]ik!) and @4 = 4 ,}jl(dik’ak/di’“’bk) for B = (by,...,b).

!
On the other hand, we know &4 = &f kl_[l((qfk)bk/(q?k)ak) from (21), (25) and (30). Due to the

identity (¢2)mdim = [m];!, the assertion wg = @‘g of Theorem 5 is equivalent to

Let pi(x) = (pi(x)ap) be the matrix for the left multiplication of z € U,f (g):
=Y Efpi(a)pa. (34)
B
Let further m;(g) = (mi(9) ap) be the representation matrix of g € A,(g):

= 3" [B)milg)pa. (35)
B

The following element in the right quotient ring A,(g)s will play a key role in our proof.
& = )\i(aiei)/(n, 1=1,2. (36)

See Definition 1 for o; and (39), (41), (42) for the concrete forms in rank 2 cases. In Section 5.3
we will check the following statement case by case.

Proposition 2. For g of rank 2, mi(0;) is invertible and the following equality is valid:
pilei)ap = mi(&)ap, =12, (37)
-1

where the right-hand side means \;jmi(o;e;)mi(0;)

Proof of Theorem 5 for rank 2 case. We write the both sides of (37) as M’ 5 and the one
for i’ instead of i as M’i 5. From

ZECM”B:@ —ei Yy EJip=eF ZEBMBA = ZEI/ FEMp 4
B

we have ) 5 ngyé = > 538M% . On the other hand, the action of the two sides of (31)
with ¢ = & and j =i’ are calculated as

Wi’(ﬁz) q)’A> = Ty 6@ Z|B Z‘C

and

bom(&)|A) =@ [BY)Mpy =Y |[C)OEM .
B BC

Hence " p MEip®%E = 30, @G M5 ,. Thus 74 and ®F satisfy the same relation. Moreover the
maps m; and p; are both homomorphism, i.e., m(gh) = mi(g)mi(h) and pi(zy) = pi(z)pi(y). We
know that ® is the intertwiner of the irreducible A,(g) modules and (33) obviously holds as
l=1at A=B=(0,...,0). Thus it is valid for arbitrary A and B. [

Conjecture 1. The equality (37) is valid for any g.
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5.3 Explicit formulae for rank 2 cases: Proof of Proposition 2

Here we present the explicit formulae of (34) with x = e; and (35) with g = 0y, 0;¢; that allow

one to check Proposition 2. We use the notation (i) = ¢° — ¢~%. In each case, there are two

i-sequences, 1 and 2 = 1’ corresponding to the two reduced words. Let x be the anti-algebra
involution such that y(e;) = e;. Then the relation x(E{') = E! holds, where A = (a, ..., az2,a1)
denotes the reversal of A = (aj,as2,...,a;). Applying x to (34) with x = e; yields the right
multiplication formula Ei’f‘ e =).p Eiﬂg pi(e;)pa for i’-sequence. In view of this fact, we shall
present the left and right multiplication formulae for i = 2 only.

As for (35) with g = &; in (36), explicit formulae for o;, 0;e; € A4(g) and their image by the
both representations m; and mg will be given. We include an exposition on how to use these
data to check (37) along the simplest Ay case. The Cy and G cases are similar.

5.3.1 As case
b1 b2

b3
The ¢-Serre relations are
2 2 2 2
etes — [2]1e1e2e1 + ege7 =0, ese1 — [2]1eze1e9 + e1e5 = 0,

where [m]; = (m)/(1). Let by, b, b3 be the generator for positive roots: by = e, by = e1ea—qeae;
and b3 = e1. In the notation of Section 2.2, they are the root vectors b; = eg, associated with
the reduced expression wg = sgs182 for 2 = (2,1,2). The corresponding positive roots are
(81, B2, B3) = (g, a1 + a9, 7). In particular, by = Th(e1). Their commutation relations are
boby = q'biby, b3by = by + qbibs, byby = ¢~ 'bobs.

Lemma 2. For Eg’b’c = bgbbbS, we have
Egvbvc ce1 = Eg:bzc+1’
Eg,b,c ey = qcbe;-ﬁ-l,b,c + [C]lEg,b—H,c—l’
el - E*g,b,c _ qa—bEg,b,c—H + [a]lEg—l,b—&-l,c’
es - E”g,b,c _ E~‘(21+1,b,c‘
Proof. By induction, we have
bsb} = ¢"bibs + [n]1b7 " ba, bsb = g~ "bybs,
biby = q"b1bY + [n)iboby Tt bEby = g by bY.
The lemma is a direct consequence of these formulae. |

Set E‘ll’b7c = X(Eg’b’a) = x(3)x(b5)x(b§) = b2b2bS, where by := x(b2) = ese; — geiea. By
applying x to the first two relations in Lemma 2, we get

ma.b,c  rha+1,be ma,b,c —b a,b,c+1 ~a—1,b+1,c
€1 - El = El s €9 - El == qa El + [a]1E1 . (38)

Thus we find py(e;) = pi(es—;). This property is only valid for A3 and not in Cy and Go.
Let us turn to the representations m; of A4(Asz). The elements o; in Definition 1 and o;e; are
given by

o1 = t13, o9 = t1ataz — qtootis, orer = to3, ogeg = t1at33 — qt3at13. (39)

See the exposition at the end of Section 3.3.1 and the remark after Lemma 1.
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From (14) and (19) with «; = p; = 1, we find
7('1(01) = kle, 7T1<O'1€1) = ai'—kg, 7T1(02> = k2k3, 7T1(02€2> = al_a;k?, + kla;,

where the notation like kjaj =k ® 1 ® a™ has been used. Since k € End(F,) is invertible, so
is mj(o;) and we may write

(&) =Malky!,  m(&) = M(arajky ! + kikylajky ),

where Ay = A2 = (1 — ¢?)~1. The action of each component on the ket vector |m)) := d; m|m) €
Fq, (cf. (32)) takes the form

aflm) = N'g"lm+ 1), aT|m) =[mlifm 1),  klm) = ¢"lm)), (40)

due to (17). (The formula (40) is valid also for C3 and G2 provided that a™, a~, k are interpreted
as AT, A=, K for i = 2.) Thus one has

m1(&1)la,b,c) =la+1,b,¢), m1(&2)]a, b, c) = [alila — 1,0+ 1,¢)) + qa_b|a, b,c+1)).

This agrees with (38) thereby proving (37) for i = 1. The other case i = 2 also holds due to the
symmetry m2(&;) = m1(€3—;). Thus Proposition 2 is established for A,.
In terms of the checked intertwiner R in Section 4.2, Theorem 5 implies
Eiavbvc — Z szblsEik/;JvZ'
7;7j7k
This is valid either for i = 1 or 2 thanks to the middle property in (21). This relation connecting
the PBW bases with the solution of the tetrahedron equation is due to [20].

5.3.2 C5 case

bl b2 b3
by
The g-Serre relations are
6?62 — [3]16%6261 + [3]161626% — 626? =0, e%el — [2]2e2e1€2 + ele% =0,

where [m]; = (m)/(1) and [m]s = (2m)/(2).

Let b1,...,bs be the generator for positive roots: by = eq, by = e1e9 — q2€261, b = ﬁ(elbg —
boe1) and by = e;. Their commutation relations are boby = ¢~ 2b1bs, b3b; = —q_1<1>[2]f1b%+blb3,
babi = by + ¢*b1ba, bsba = ¢ 2babs, biby = [2]1b3 + boba, bsbs = g~ 2bsba.

Fab,cd
Lemma 3. For Ey” %" = bib3b5b$, we have

)

Eg,b,c,d o] = Eg,b,c,d+1
Eg,b,c,d ey = [dhqddcfl Egvbﬂvc,d—l + g2d-b) Eg+1,b,c,d

o <1>q2d_20+1[C]g[Q}IlEg’bJrQ’C_Ld + [d N 1}1[d]1E(21,b,c+1,d—2,
el - EN‘g,b,C,d _ [2]1[b]1q2a—b+1E~v(217b71,c+17d + q2a—QCE~1;,b,C,d+1 + [a]QENv(zzfl,bJrl,c,d’

ab,c,d  tha+1.b,c,d
eg - gy = E, .
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Proof. By induction, we have

babl = bTbsg®™ + [n]obT b, babl = [2]1[n]1b5 thsg T 4 b3by,
by} = ¢~ 2" by, biby = [n]1bob g™ 4 bibg?" + [ — 1)1 [n]1b3bl 2,
biby = —q' T2 (1) [n]2[2] 10305 il bEby = g 2hebY,  bhby = g "biby.
The lemma is a direct consequence of these formulae. |

Set E{" bed (Ed <0, ). The left multiplication formula for this basis is deduced from the
above lemma by applying x. One can adjust the definition of EiA in (6) with that in [24] by
setting v = ¢~ 1.

Let us turn to the representations 7; of A,;(C2). The elements o; in Definition 1 and o;e; are
given by

o1 = t1a, o2 = ti3tas — qlaslia, o1e1 = log, o269 = l13t34 — qt3stia. (41)
From (14) and (23) with a; = p; = 1, we have
m1(01) = —ki1 Koks,
m1(ore1) = —a Koks,
m1(02) = —Koks’Ky,
_2 _ _ 42
71'1(0' ) = —a; A;_k32K4 — [2]131 kla;k3K4 — k12A2 ag_ K4 — Azk12K2,

AL Ti(6) =afk 7,
Ay m (&) = ay PAT Ky + ki 2AS Ky lad Cky 2
+ [2harkiKo taiks !+ kitks AT K,
ma(01) = —koKsky,

ma(orer) = —Kikoa — Kja; Ajky — AT aj Ksky,
ma(0s) = —K k2K,
2(02e2) = —ATk3K3,
Cima(6) = ATal k' + Kiag ky 'ATK !+ K Ky ta k
)\ 'ra(&) = ATK,

3

We find that m;(o;) is invertible. Comparing these formulae with Lemma 3 by using (40),
the equality (37) is directly checked. Thus Proposition 2 is established for Cs.
In terms of the checked intertwiner X in Section 4.3, Theorem 5 implies
Ea bed Z K%blgldEl7k7j7i.
1,5,k

Thus the solution to the 3D reflection equation [13] is identified with the transition coefficient
of the PBW bases for U (Ca).

5.4 G, case
b3

b1 bg b4 b5
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The g-Serre relations are

ees — [A1efeger + [411(3)1/[2]) efeaet — [4l1ereae] + ezef = 0,

2 2
ese1 — [2]qeze1e2 4 e1e5 = 0,

where we remind that [m]; = (m)/(1) and [m]s = (3m)/(3).

Let b1, .. b6 be the generator for positive roots: by = es, by = e1ea — ¢Peseq, by = ﬁ(@lbg —
gbaer), bs = H (e1bs — g 'bser), by = H (byby — ¢ 'bobs) and bg = e;. Their commutation
relations are as follows: boby = bibag ™3, bsby = (1)2b3q3[3]] L bibsg 3, byby = biby — b2(1)q 1,
bsbr = b1bsq® —baba(1) g~ — (g +q> —1)b3q 3, beb1 = b1bsq>+ba, bgba = babsq ™3, byby = bobsq™ 1+
b3[3]1, bsba = babs — b3(1)g ™", bba = qbobg + ba[2]1, babs = b3bag™3, bsbs = (1)2b3q~3[3];" +
bsbsq >, bebs = bsbg — b3(1)q ", bsbs = babsq >, beba = [3]1b5 + babsg ™", bebs = bsbsg>.

Lemma 4. For E$" bedef = b3b% - - b{;, we have

E;7b7c7d7e7‘f . e J— E~a7b767d7e7f+l

Egyb,ad,e,f <1>[e]2q 3c—d+3f— 1Ea b+1,c,d+1,e—1,f

€9
+ (1)%[e = Ualelaf3]y g 2 rH O Eg Pttt
— (3)[d — 1)y [d) g3 23341 pbtletld=2.e.f
<1)[d] —6¢— d+3(e+f)Ea b+2,c,d—1,e, f+ [f 1] [f]1q73e+f72Eg,b,c7d+1,e,f_2
+ [31[d [ flrg¥ 2Lt erbabe s 1 | (4] g -Bemdd2f-2 fabtlede,f-1
+q —3(btc—e—f) a+1bcdef + <1> e ]2[3];1q3(—2c+e+f+1)Eﬂg,b+3,cfl,d,e,f
— 3)[d —2l1[d — 1]1[d]1¢* d+e+f+2)Ea,b,c+2,d73,e,f
— (1)[e]o[fl1g 3+ BghottBem b/
[e]gq_3d+3f( 2d+1[3]1 . [2]2)E¢21 Jbe+1,de—1,f
+[f = 2h[f — W [fl Eghotetti=s,
e1 - ByPotl = —(1)[clyg T2 Egh e bR OT 3] [b — 1)y [BlagPe PR Byt
+ [3]1[d]1q3a+b—2d+2Eg,b,c,d—l,e—i—l,f + q3a+b—d—3eEg,b,c,d,e,f+1
+ [2]1[b]1q3(a—c)Ezzz,b—1,c,d+1,e,f n [a]zE;fl,bJrl,c,d,e,f’
ey - Eg’bvcvdve,f _ E~l21+1,b,c,d,e,f‘

Proof. By induction, we have

bebi = *"bybe + [n]2b} ™ 'ba,
bebs = [3]1¢* " [n — L1 [n]105 b3 + q"05be + [2]1[n] 105" ba,
baby = g *"b5by,  beby = bibs — (1)g° " [n]abl b3,
bby = [3]1¢° 2" [n]1b] b5 + g "blbe,  bebE = g *"blbg,
and
bgbl = q"_Q[n — 1}1[72]1()4[)2_2 + q3"blb76‘
+ ¢V nfibabg ™" + [n = 21[n — s [n]1bsbg >,
b5b1 = (1)%q "V n — Ua[n]o[3], 63652 + ¢*" b1}
—q7(q" + ¢* = Dnlabsby ™! — g7 (1) [n]2b2bsdf
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blby = bobl — (1)g* " [n]obib2 1, boby = ¢ 2"byb?,
biby = —(3)¢°*"[n — 2]y [n — 1)1 [n] 630> — (1)g " [n]1b3b;
— (3)q" 7" [n — 1)1[n]1babsb} > + bib],

biby = [31¢* > [n]1bsb] " + ¢ "babf,  blbs = g bsb],
Dby = ¢ P"biby + (1)2¢° " [n)a[3] 10305, bEby = g7 hobl,  bEby = g biby,
The lemma is a direct consequence of these formulae. |

A part of the above results have also been obtained in [25].
Let us turn to the representations 7; of A;(G2). The elements o; in Definition 1 and o;e; are
given by

o1 = t17, o9 = togt17 — qlartis, oi1e1 = toy, o2e3 = t36t17 — qt3rtie. (42)
From (14) and (27) with a; = p; = 1, we have

m1(01) = ki Kok3K ks,
m1(09) = Kok K3k K,
1(o1e1) = al KokiK ks,
T (02e2) = KKIKIK,AT + [2:k3A; Ko ATK KK + a5 AT KKK K
+ [3]1a; *kia] KKk K + [3]1a; KIKo k3K jad k2K
— q[31 K3 AL KokiA TK kK + [3)1kiK3a; kial *ks K + kKiK3kiA  al K
+ [3l1a; kA, af *kKak3K + [3]1a; kiKoaz ks A K ki K
+ k3AS 2al*Kik3Ke + [3)1 k3 A Koag kyKya;) kiKg
+ K3KZa; P A2 k3K + [3]1 k3 K2a; 2k A a) k2K,
Aim&) = arky
Ay 'mi(&) = ar  ATKS ! + [21kiAT K PATKY ! — o3k A ks ' ATKY!
+ [31a7 %k Ky taf k! + [3l1a; kiag ky 2A K, ! + [31a7 kik; 'K talk; !
+ KKK 'k;ATKg ! + [3l1a7 k1A, K 'a) ’k;
+[BlikiAS afk; K agks ! + KPA UK, Tag Uk
+ [3]1kTKoa; k; 'K %al *k; % + kTKoA [ K 2ad?k;?
+ kiKoa; k3 A PK 2 + [3]1kTKoa; *k; AT K Paf k; !,
ma(01) = ko K3k K5k,
m2(09) = K1 k3 K3kIKs5,
ma(ore1) = KikiKsksal + AT aj KskiKske + Kik3Kza; Ak + Kiay 2Af kiKske
+ 21 K1a; koaf ks Ksks + Ki1k3A af *Ksk,
T2(09e9) = ATKSKAKIK 5,
A lra(6) = ATag ko '+ 211K a, Ko tal k' + Kiay 2k, AT K + Kikoa ky 2ATK !
+ Kikok; 'K:'al ks ! + Kiko A K3 'af %k 2,
Ay tra(&2) = ATK L

S

We find that 7j(0;) is invertible. Comparing these formulae with Lemma 4 by using (40),
the equality (37) is directly checked. Thus Proposition 2 is established for Ga.
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In terms of the checked intertwiner J in Section 4.4, Theorem 5 implies

a ,b,e,d e,f Z C_Fabcdef En m,l,k:,],

ijklmn
i,5,k,l,m,n

6 Discussion

In view of Proposition 2 it is natural to expect that the map defined on generators of U; (9)
as e; — 1; = o;e;/0; extends to an algebra homomorphism from UqJr (g) to Ay(g)s, namely,
7; satisfies g-Serre relations. In fact, it is true not only for rank 2 cases but also for any g.

Theorem 6. In Ay(g)s the following relation holds for any i, j (i # j):

lfaij

3 gt <o,
r=0

Proof. By relabeling of Dynkin indices we can assume i = 1, j = 2. Set 7; = 0¢; for i = 1, 2.
Then from Proposition 1 we have

0;T; = q;TiO04, 1= 17 27 0T = T;j04, Za] = 17 27 i 7& .] (43>
Using (12) with these relations one verifies

+8)(r+s—1)/2
ninoni = ai TR () [ (070201,
Here we have set s = 1 — a12 — r. Recalling that o; and 09 commute with each other, we can
reduce the claim to showing

1—ai2

Z = Z (—1)TT1(T)T27'1(S) =0.

r=0

Note that the right (resp. left) weight of Z is (1 — a12)(w1 — a1) + (w2 — ag) (resp. wo((1 —
a12)wwy + ws2)). The two weights are not related by the longest element wg € W. Hence if we
show f;Z = Zf; = 0 for any i, we can conclude Z = 0 by the remark after Lemma 1. The
properties f;Z = 0 for any i and Zf; = 0 for ¢ £ 1,2 are trivial.

First we show Z fo = 0. We have

(ri727f) fo = 71 (12 f2) (1aky ') = T{ 02(871)° = 87 o0,

(ha,m1—a1) a1z

where = ¢y and we have used (43). Hence,

r+s=1—ai2

= ¢y*" = qf

In the last equality we have used the following formula:

g@z)i "] :ﬁ (1 gty
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Next, we show Z f; = 0.
T S
(rirori) o= 0 7o (ki)' ok ) ()’ + 7m0 3o (k)
i=1 i=1

T S
i—l—s,_r—1 s i—1_r s—1
= E oy T| TeTiO1 + E VT Ty O,
i=1 i=1

where constants v, J are determined by oy (lezl_l) = Y1101, 01 (Tle_l) = 01901 and hence we

have = qlql—(hmm—oa) _ q%’ 5= q1—<h17w2—o¢2> _ qtlllz_ Then, we obtain
(=1)" - i—1 1 ~ i 1
2= 3 A (et o+ 3
r+s=1—ai2 B =1 =1
-1 1—49" 1—~%
= Z ( ‘ ) ‘ (575 7 7 rryrior + T TngTf_101>
sy, [T s]! 1—~ 1—~
= Z (‘(—1)T_IQfT1(T_1)TQTl(S) + (—1)TQT_171(T)T271(8_1)> o1=0
r+s=1—ai2
as desired. |

Remark 1. The special case w = wg of [26, Theorem 3.7] gives Theorem 6 here. Moreover
[26, Theorem 3.7] also shows that U (g) is isomorphic to an explicit subalgebra of A4(g)s. We
would like to thank the referee for pointing this out and for giving helpful comments.

It will be interesting to investigate it further in the light of the quantum cluster algebra which
has been recognized as a fundamental structure in the quantized algebra of functions [6]. The
representations via multiplication on PBW bases also play a fundamental role in the study of
the positive principal series representations and modular double [7].

In this paper we have not discussed the analogue of the tetrahedron and 3D reflection equa-
tions for general g. However, from our proof of Theorem 5, we expect that the basic constituents
are R and K only, and their compatibility condition is reduced to the rank 2 cases (2) and (3).

Acknowledgments

The authors thank Ivan C.H. Ip, Anatol N. Kirillov, Toshiki Nakashima and Masatoshi Noumi
for communications. They also thank one of the referees for drawing attention to the referen-
ces [9, 26]. This work is supported by Grants-in-Aid for Scientific Research No. 23340007,
No. 24540203, No. 23654007 and No. 21340036 from JSPS.

References

[1] Bazhanov V.V., Mangazeev V.V., Sergeev S.M., Quantum geometry of 3-dimensional lattices, J. Stat. Mech.
Theory Exp. 2008 (2008), P07004, 27 pages, arXiv:0801.0129.

[2] Bazhanov V.V., Sergeev S.M., Zamolodchikov’s tetrahedron equation and hidden structure of quantum
groups, J. Phys. A: Math. Gen. 39 (2006), 3295-3310, hep-th/0509181.

[3] Berenstein A., Zelevinsky A., Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), 128—
166.

[4] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994.

[5] Drinfeld V.G., Quantum groups, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2
(Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 798-820.


http://dx.doi.org/10.1088/1742-5468/2008/07/P07004
http://dx.doi.org/10.1088/1742-5468/2008/07/P07004
http://arxiv.org/abs/0801.0129
http://dx.doi.org/10.1088/0305-4470/39/13/009
http://arxiv.org/abs/hep-th/0509181
http://dx.doi.org/10.1007/PL00000363

PBW Bases and Quantized Algebra of Functions 23

Geif} C., Leclerc B., Schréer J., Cluster structures on quantum coordinate rings, Selecta Math. (N.S.) 19
(2013), 337-397, arXiv:1104.0531.

Ip I.C.H., Positive representations of split real quantum groups of type By, Cy, Fu, and G2, arXiv:1205.2940.

Isaev A.P., Kulish P.P., Tetrahedron reflection equations, Modern Phys. Lett. A 12 (1997), 427-437,
hep-th/9702013.

Joseph A., Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzge-
biete (8), Vol. 29, Springer-Verlag, Berlin, 1995.

Kapranov M.M., Voevodsky V.A., 2-categories and Zamolodchikov tetrahedra equations, in Algebraic
Groups and their Generalizations: Quantum and Infinite-Dimensional Methods (University Park, PA, 1991),
Proc. Sympos. Pure Math., Vol. 56, Amer. Math. Soc., Providence, RI, 1994, 177-259.

Kashiwara M., Global crystal bases of quantum groups, Duke Math. J. 69 (1993), 455-485.

Kuniba A., Okado M., A solution of the 3D reflection equation from quantized algebra of functions of
type B, arXiv:1210.6430.

Kuniba A., Okado M., Tetrahedron and 3D reflection equations from quantized algebra of functions,
J. Phys. A: Math. Theor. 45 (2012), 465206, 27 pages, arXiv:1208.1586.

Lusztig G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990),
447-498.

Lusztig G., Introduction to quantum groups, Progress in Mathematics, Vol. 110, Birkh&user Boston Inc.,
Boston, MA, 1993.

McConnell J.C., Robson J.C., Noncommutative Noetherian rings, Pure and Applied Mathematics (New
York), John Wiley & Sons Ltd., Chichester, 1987.

Noumi M., Yamada H., Mimachi K., Finite-dimensional representations of the quantum group GLg4(n; C)
and the zonal spherical functions on Uy(n — 1)\Uq(n), Japan. J. Math. 19 (1993), 31-80.

Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras,
Leningrad Math. J. 1 (1990), 193-225.

Sasaki N., Quantization of Lie group and algebra of G2 type in the Faddeev-Reshetikhin—Takhtajan ap-
proach, J. Math. Phys. 36 (1995), 4476-4488.

Sergeev S.M., Tetrahedron equations and nilpotent subalgebras of U,(sl,), Lett. Math. Phys. 83 (2008),
231-235, arXiv:0707.4029.

Soibelman Y.S., Algebra of functions on a compact quantum group and its representations, Leningrad
Math. J. 2 (1991), 161-178.

Soibelman Y.S., Selected topics in quantum groups, Internat. J. Modern Phys. A 7 (1992), suppl. 1B,
859-887.

Vaksman L.L., Soibelman Y.S., An algebra of functions on the quantum group SU(2), Funct. Anal. Appl.
22 (1988), 170-181.

Xi N.H., Canonical basis for type Bz, J. Algebra 214 (1999), 8-21.
Xi N.H., On the PBW bases of the quantum group U,(G2), Algebra Collog. 2 (1995), 355-362.

Yakimov M., Invariant prime ideals in quantizations of nilpotent Lie algebras, Proc. Lond. Math. Soc. (3)
101 (2010), 454-476, arXiv:0905.0852.

Zamolodchikov A.B., Tetrahedra equations and integrable systems in three-dimensional space, Soviet Phys.
JETP 52 (1980), 325-336.


http://dx.doi.org/10.1007/s00029-012-0099-x
http://arxiv.org/abs/1104.0531
http://arxiv.org/abs/1205.2940
http://dx.doi.org/10.1142/S0217732397000443
http://arxiv.org/abs/hep-th/9702013
http://dx.doi.org/10.1215/S0012-7094-93-06920-7
http://arxiv.org/abs/1210.6430
http://dx.doi.org/10.1088/1751-8113/45/46/465206
http://arxiv.org/abs/1208.1586
http://dx.doi.org/10.2307/1990961
http://dx.doi.org/10.1063/1.531350
http://dx.doi.org/10.1007/s11005-008-0219-x
http://arxiv.org/abs/0707.4029
http://dx.doi.org/10.1142/S0217751X92004087
http://dx.doi.org/10.1007/BF01077623
http://dx.doi.org/10.1006/jabr.1998.7688
http://dx.doi.org/10.1112/plms/pdq006
http://arxiv.org/abs/0905.0852

	1 Introduction
	2 Quantized enveloping algebra Uq(g)
	2.1 Definition
	2.2 PBW basis

	3 Quantized algebra of functions Aq(g)
	3.1 Definition
	3.2 Right quotient ring Aq(g)S
	3.3 Realization by generators and relations
	3.3.1 An-1 case
	3.3.2 Cn case
	3.3.3 G2 case


	4 Representations of Aq(g)
	4.1 General remarks
	4.2 A2 case
	4.3 C2 case
	4.4 G2 case

	5 Main theorem
	5.1 Definitions of AB and AB
	5.2 Proof of Theorem 5 for rank 2 cases
	5.3 Explicit formulae for rank 2 cases: Proof of Proposition 2
	5.3.1 A2 case
	5.3.2 C2 case

	5.4 G2 case

	6 Discussion
	References

