Наукова електронна бібліотека
періодичних видань НАН України

Control of the compression zone position in plasma streams generated by MPC

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Solyakov, D.G.
dc.contributor.author Volkova, Y.E.
dc.contributor.author Cherednychenko, T.M.
dc.contributor.author Ladygina, M.S.
dc.contributor.author Marchenko, A.K.
dc.contributor.author Petrov, Yu.V.
dc.contributor.author Chebotarev, V.V.
dc.contributor.author Makhlaj, V.A.
dc.contributor.author Staltsov, V.V.
dc.contributor.author Yeliseyev, D.V.
dc.date.accessioned 2019-02-18T19:38:50Z
dc.date.available 2019-02-18T19:38:50Z
dc.date.issued 2018
dc.identifier.citation Control of the compression zone position in plasma streams generated by MPC / D.G Solyakov, Y.E. Volkova, T.M. Cherednychenko, M.S. Ladygina, A.K. Marchenko, Yu.V. Petrov, V.V. Chebotarev, V.A. Makhlaj, V.V. Staltsov, D.V. Yeliseyev // Вопросы атомной науки и техники. — 2018. — № 6. — С. 130-133. — Бібліогр.: 10 назв. — англ. uk_UA
dc.identifier.issn 1562-6016
dc.identifier.other PACS: 52.40.Hf; 52.70
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148826
dc.description.abstract This paper is devoted to the investigation of magnetohydrodynamic characteristics of plasma streams generated by a magnetoplasma compressor (MPC) and control mechanisms of a compression zone position. Nitrogen, helium, and argon were used as working gases. The measurement results of electric currents spatial distributions in the plasma streams identified that for helium (P = 10 Torr) both toroidal vortices and magnetic field displacement from the near-axis region are observed, then, the electric current direction reverses. Similar spatial structure of the electric currents was observed for helium with the initial pressure of 2 Torr. However, in this case, the electric current direction changes much earlier. The electric currents flow from 20 cm to 30 cm from the central electrode of MPC accelerating channel in the modes with nitrogen (P = 0.6 and P = 0.3 Torr). There are current vortices and a sizable magnetic field displacement at a distance of a 6 cm to 18 cm from the MPC output. The duration of a plasma stream generation is about two times less for helium than for the modes of operation with other gases. uk_UA
dc.description.abstract Метою статті є дослідження магнітогідродинамічних характеристик плазмових потоків, що генеруються магнітоплазмовим компресором (МПК), та механізмів керування положенням зони компресії. У якості робочих газів було використано азот, аргон та гелій. Результати вимірювання просторового розподілу електричних струмів у плазмовому потоці продемонстрували, що для гелію (Р = 10 Торр) спостерігаються як тороїдальні вихори струму, так і витіснення магнітного поля із приосьової області, з подальшою зміною напрямку протікання струму. Подібну просторову структуру електричних струмів було отримано і для гелію з початковим тиском 2 Торр. Проте, у цьому випадку, напрямок протікання струму змінюється значно раніше. У режимах роботи з азотом на залишковому газі (P = 0.6 та P = 0.3 Toрр) струми розповсюджується на відстані від 20 см до 30 см від центрального електроду прискорювального каналу МПК. Розвиваються вихори струму із подальшим витісненням магнітного із приосьової області на відстані від 6 см до 18 см від виходу МПК. Також виявлено, що для режимів роботи з гелієм час генерації плазмового потоку майже у два рази менше, порівняно з режимами роботи на інших газах. uk_UA
dc.description.abstract Целью этой статьи является исследование магнитогидродинамических характеристик плазменных потоков, генерируемых магнитоплазменным компрессором (МПК), и механизмов управления положением зоны компрессии. В качестве рабочих газов использовались азот, аргон и гелий. Было обнаружено, что для гелия (Р = 10 Торр) наблюдаются как тороидальные токовые вихри, так и вытеснение магнитного поля из приосевой области, с дальнейшей сменой направления протекания тока. Подобная пространственная структура электрических токов была получена и для гелия с начальным давлением 2 Торр. Однако, в этом случае, направление протекания тока меняется значительно раньше. В режимах работы с азотом при остаточном давлении (Р = 0.6 и Р = 0.3 Торр) токи распространяются на расстояния от 20 см до 30 см от центрального электрода ускорительного канала МПК. Происходит развитие токовых вихрей, с дальнейшим вытеснением магнитного поля из приосевой области на расстоянии от 6 см до 18 см от выхода МПК. Также было установлено, что для режимов работы с гелием время генерации плазменного потока почти в два раза меньше, в сравнении с режимами работы на других газах. uk_UA
dc.description.sponsorship This work has been supported by National Academy of Sciences of Belarus the project № 08-01-18 and the Targeted Program of NAS of Ukraine on Plasma Physics the project № П-5/24-2018. uk_UA
dc.language.iso en uk_UA
dc.publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України uk_UA
dc.relation.ispartof Вопросы атомной науки и техники
dc.subject Динамика плазмы и взаимодействие плазма-стенка uk_UA
dc.title Control of the compression zone position in plasma streams generated by MPC uk_UA
dc.title.alternative Керування положенням зони компресії у плазмових потоках, що генеруються МПК uk_UA
dc.title.alternative Управление положением зоны компрессии в плазменных потоках, генерируемых МПК uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис