Показати простий запис статті
dc.contributor.author |
Capel, J.J. |
|
dc.contributor.author |
Kress, J.M. |
|
dc.contributor.author |
Post, S. |
|
dc.date.accessioned |
2019-02-12T20:36:35Z |
|
dc.date.available |
2019-02-12T20:36:35Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Invariant Classification and Limits of Maximally Superintegrable Systems in 3D / J.J. Capel, J.M. Kress, S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 27 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 33C45; 33D45; 33D80; 81R05; 81R12 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2015.038 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147015 |
|
dc.description.abstract |
The invariant classification of superintegrable systems is reviewed and utilized to construct singular limits between the systems. It is shown, by construction, that all superintegrable systems on conformally flat, 3D complex Riemannian manifolds can be obtained from singular limits of a generic system on the sphere. By using the invariant classification, the limits are geometrically motivated in terms of transformations of roots of the classifying polynomials. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Invariant Classification and Limits of Maximally Superintegrable Systems in 3D |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті