Використовується поняття αΛ -наближеного поліморфізму для конструювання ψ(αΛ)-наближеного оптимального алгоритму (ψ(αΛ) = 2-1/αΛ) для реоптимізації CSP задачі MAX - Λ ( Ins - MAX - Λ) з добавленням деякого обмеження. Гіпотеза алгебраїчної дихотомії характеризує NP-складність розглянутого підходу, а базова SDP релаксація для наближених поліморфізмів (BasicSDP) визначає ефективний алгоритм заокруглення для MAX - Λ та Ins - MAX - Λ.
The concept of αΛ -approximation polymorphism is used for design of ψ(αΛ)-approximation optimal algorithm (ψ(αΛ) = 2-1/αΛ) for reoptimization of CSP problem MAX - Λ ( Ins - MAX - Λ) with addition of some constraint. Algebraic dichotomy conjecture characterizes NP - hardness of the considered approach and basic SDP relaxation for approximation polymorphism ( BasicSDP ) defines an efficient rounding algorithm for MAX - Λ and Ins - MAX - Λ.