Показати простий запис статті

dc.contributor.author Bruno, A.D.
dc.date.accessioned 2017-09-23T16:47:37Z
dc.date.available 2017-09-23T16:47:37Z
dc.date.issued 2008
dc.identifier.citation Power geometry in nonlinear partial differential equations / A.D. Bruno // Український математичний вісник. — 2008. — Т. 5, № 1. — С. 32-45. — Бібліогр.: 4 назв. — англ. uk_UA
dc.identifier.issn 1810-3200
dc.identifier.other 2000 MSC. 200134, 200135
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/124295
dc.description.abstract Power Geometry (PG) is a new calculus developing the differential calculus and aimed at nonlinear problems. The main concept of PG is the study of nonlinear problems in logarithms of original coordinates. Then many relations nonlinear in the original coordinates become linear. The algorithms of PG are based on these linear relations. They allow to simplify equations, to resolve their singularities (including singular perturbations), to isolate their first approximations, and to find asymptotic forms and asymptotic expansions of their solutions. In particular, they give simple methods to identify the equations and systems as quasihomogeneous, and then to introduce for them self-similar coordinates. As an application, we consider the stationary spatial axially symmetric flow of the viscous compressible heat conducting gas around a semi-infinite needle. Other application: finding blow-up solutions. uk_UA
dc.description.sponsorship The work was supported by RFBR, Grant 08-01-00082. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Український математичний вісник
dc.title Power geometry in nonlinear partial differential equations uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис