Let S¹ = {(x,y) belongs R² : x² + y² = 1} be a circle, S¹ v S¹ = (S¹ II.S¹)/~, x0 ~ y0 a topological space with a fix point and f : S¹ v S¹ → R a continuous function with a finite number oflocal extrema. We will consider ...
Доказано необходимое и достаточное условие топологической эквивалентности гладких функций, заданных на окружности, с конечным числом локальных экстремумов.
We construct the combinatorial invariant of functions from a F(D²) class. Necessary and sufficient condition for a topological equivalence of such functions is obtained in terms of their invariants.