Предложен метод построения операторов приближения функции f(x, y), который интерполирует f(x, y) в точках пересечения прямыхΓk, k = 1, 2, …, M и имеет проекции вдоль этих прямых, совпадающих с проекциями от f(x, y) вдоль этих прямых. Метод построения операторов интерполяции функций двух переменных с заданными проекциями исследуется для случая пересекающихся прямых, никакие три из которых не пересекаются в одной точке. Рассмотрены примеры построения интерполяционных операторов с заданными проекциями вдоль M = 3, 4 пересекающихся прямых.
Запропоновано метод побудови операторів наближення функції f(x, y), який інтерполює f(x, y) в точках перетину прямих Γk, k = 1, 2, …, M і має проекції вздовж цих прямих, які збігаються з проекціями від f(x, y) вздовж цих прямих. Метод побудови операторів інтерполяції функцій двох змінних із заданими проекціями досліджується для випадку перетинних прямих, ніякі три з яких не перетинаються в одній точці. Розглянуто приклади побудови інтерполяційних операторів із заданими проекціями вздовж M = 3, 4 перетинних прямих.
In this article was proposed a method for constructing approximation operator function f(x, y) that interpolates f(x, y) the points of intersection of lines Gk, k = 1, 2, …, M and the projection is along these lines that match the projections of along these lines. Method of constructing operators interpolation functions of 2 variables with given projections investigated for the case of lines that intersect and no three intersect at one point. Were considered examples.