Изучается граничное поведение так называемых регулярных отображений, которые являются естественным обобщением квазиконформных отображений. Найден ряд эффективных условий на коэффициент дилатации Kf для гомеоморфного продолжения указанных отображений по простым концам в ограниченных конечносвязных областях.
Дослiджується гранична поведiнка так званих регулярних вiдображень, якi є iстотним
узагальненням квазiконформних вiдображень. Знайдено низку ефективних умов на коефiцiєнт дилатацiї Kf для гомеоморфного продовження вказаних вiдображень по простих кiнцях в обмежених скiнченнозв’язних областях.
The boundary behavior of the so-called regular mappings that are a natural generalization of quasiconformal mappings is studied. A number of effective conditions on the dilatation coefficient Kf for a homeomorphic extension of these mappings by prime ends in finitely connected bounded domains are found.