Показати простий запис статті
dc.contributor.author |
Матвеев, В.В. |
|
dc.contributor.author |
Титаренко, Д.В. |
|
dc.contributor.author |
Титаренко, В.Н. |
|
dc.date.accessioned |
2016-01-17T08:45:08Z |
|
dc.date.available |
2016-01-17T08:45:08Z |
|
dc.date.issued |
2013 |
|
dc.identifier.citation |
О построении совместных систем линейных ограничений экономико-математических моделей задач с двухсторонними неравенствами / В.В. Матвеев, Д.В. Титаренко, В.Н. Титаренко // Культура народов Причерноморья. — 2013. — № 262. — С. 56-61. — Бібліогр.: 8 назв. — рос. |
uk_UA |
dc.identifier.issn |
1562-0808 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/92321 |
|
dc.description.abstract |
В статье рассмотрена актуальная проблема построения совместной системы линейных
ограничений для экономико–математических моделей, задач с двухсторонними ограничениями на
переменные. Приведены примеры и сформулированы условия совместности линейных систем. |
uk_UA |
dc.description.abstract |
У статті розглянута актуальна проблема побудови спільної системи лінійних обмежень для
економіко–математичних моделей задач із двосторонніми обмеженнями на змінні. Наведені приклади і
сформульовані умови спільності лінійних систем. |
uk_UA |
dc.description.abstract |
This article deals to the actual problem of building a joint system of linear constraints for economic
and mathematical models problems with bilateral constraints on the variables. In applications of the economic
models of production systems, lower and upper limits of the values correspond to the minimum and maximum
possible values of variables and constraints which are specified explicitly. Such a statement, compared with the
traditional when variables imposed only non–negativity condition, is more common and necessary in the
construction of econometric models and the solution of practical problems of management and decision–making.
Building a joint system of linear constraints and bilateral inequalities carried out on the basis of verification of
the fulfillment of conditions:
Consistency of a system of linear constraints in Rn ( Kronecker – Capelli theorem) ;
Consistency of a system of linear constraints in Rn and in X ≥ 0, by constructing and solving linear programming
problem, which determines the consistency in area where X≥ 0;
Consistency of a system of linear constraints in the X≥Xmin, by linear coordinate transformations (change of
variables X=Xmin+Z, Z≥0 and solving linear programming problem, which determines the consistency at Z ≥ 0
and, that’s why, at the area X≥Xmin);
Consistency of a system of linear constraints at X≤Xmax, by checking of the condition Xmax–Xmin=Z, Z≥0.
There were given examples of solutions of the problem of determining the consistency of systems of linear
constraints and restrictions on the variables in the form of bilateral inequalities. |
uk_UA |
dc.language.iso |
ru |
uk_UA |
dc.publisher |
Кримський науковий центр НАН України і МОН України |
uk_UA |
dc.relation.ispartof |
Культура народов Причерноморья |
|
dc.subject |
Проблемы материальной культуры – ЭКОНОМИЧЕСКИЕ НАУКИ |
uk_UA |
dc.title |
О построении совместных систем линейных ограничений экономико-математических моделей задач с двухсторонними неравенствами |
uk_UA |
dc.title.alternative |
Про побудову спільних систем лінійних обмежень економіко-математичних моделей задач з двосторонніми нерівностями |
uk_UA |
dc.title.alternative |
About construction of joint systems of linear restrictions of econometric models problems with bilateral inequality |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
519.852.3+519.86 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті