Дано теоретическое обоснование метода идентификации нелинейной динамической системы на основе аппроксимационной модели Вольтерра при использовании тестовых многоступенчатых сигналов с учетом погрешностей измерений откликов. Для обеспечения вычислительной устойчивости метода идентификации применяется метод регуляризации и процедуры шумоподавления, основанные на вейвлет-преобразовании. Исследуется эффективность вычислительных алгоритмов, реализующих метод идентификации.
The theoretical substantiation identification method of nonlinear dynamic systems based on approximation Volterra model using multisteps test signals, taking into account the measurement error responses. To ensure numerical stability identification method used regularization method and procedures for noise reduction based on wavelet transformation. Investigated the effectiveness of computational algorithms that implement identification method.