Розглянуто задачу нечіткої кластеризації багатовимірних спостережень та запропоновано групу адаптивних алгоритмів самонавчання нейронної мережі Кохонена для можливістної кластеризації зі змінним параметром нечіткості, які здатні у реальному часі виділяти в даних кластери, що перетинаються. Наведені алгоритми характеризуються чисельною простотою та гнучкістю при роботі в умовах апріорної невизначеності відносно характеру розподілення даних в кластерах.
The problem of fuzzy clustering of multivariate observations is considered and a group of Kohonen neural network adaptive self-learning algorithms is proposed. The algorithms allow on-line possibilistic fuzzy clustering with variable fuzziness level and are characterized with computational simplicity and great flexibility when operating under conditions of a priori uncertainty about the nature of data distribution in clusters.