В одномерном случае задача о тележке — это известный тестовый пример применения принципа максимума. В двумерном случае, к которому сводится трехмерный и, вообще, n-мерный, задача не имеет аналитического решения, ее приходится решать численно. Здесь возникает проблема локализации неизвестных, одним из которых является оптимальное время T.
В одномірному випадку задача про візок - відомий тестовий приклад застосування принципу максимуму. У двовимірному випадку (до якого зводиться тривимірний і, взагалі, n-мірний) задача не має аналітичного розв‘язку, і її треба розв‘язувати чисельно. Тоді виникає проблема локалізації невідомих параметрів, одним із яких є оптимальний час T.
The one-dimensional tram problem is known as a first example of how maximum principle works. However, no analytical solution to this problem exists in 2D case (3-D and n-D cases being reduced to), and it has to be solved numerically. Here, a problem of localization arises as to unknowns one of them being an optimal time T.