Розглянуто конструкцiю нескiнченно iтерованого вiнцевого добутку метричних просторiв. Встановлено умови, за яких нескiнченно iтерований вiнцевий степiнь скiнченного метричного простору є самоподiбним, а також доведено, що група iзометрiй дiє
на ньому самоподiбно. Показано, що для довiльної скiнченної групи нескiнченно iтерований вiнцевий степiнь цiєї групи реалiзується як повна група iзометрiй самоподiбного метричного простору з самоподiбною дiєю.
Рассмотрена конструкция бесконечно итерированного сплетения метрических пространств. Получены условия, при которых бесконечно итерированное сплетение конечного метрического пространства на себя есть самоподобное пространство, а также доказано,
что группа изометрий действует на нем самоподобно. Показано, что для любой конечной группы бесконечно итерированное сплетение этой группы на себя реализуется как полная группа изометрий самоподобного метрического пространства с самоподобным действием.
Infinitely iterated wreath products of metric spaces are considered. For a finite metric space, sufficient conditions under which its infinitely full wreath power is self-similar are presented. It is shown
that the isometry group of such a space acts on it self-similarly. For an arbitrary finite group, it is
found a self-similar metric space such that its full isometry group is the infinitely iterated wreath power of this group acting on the space self-similarly.