Предлагается подход к численному моделированию акустических полей в подводных неоднородных волноводах, использующий явные разностные схемы для решения волнового параболического уравнения типа Шредингера с граничным условием треьего рода. Такой подход позволяет учесть преимущества явных разностных схем и повысить эффективность вычислительных процессов, используя методику параллельных вычислений. Рассмотрены вопросы построения и исследования устойчивости явной трехслойной разностной схемы с комплекснозначными несамосопряженными операторами. Получено условие устойчивости по начальным данным.
Розглянуто підхід до побудови та дослідження явної різницевої схеми для розв’язання хвильового параболічного рівняння типу Шредінгера з граничною умовою третього роду. Запропонована явна тришарова різницева схема з комплексними несамоспряженими операторами, досліджена її стійкість та отримана умова стійкості за початковими даними.
An approach for construction and investigation of the explicit difference scheme for solving wave parabolic equation of Shroedinger type with third type boundary condition is considered. The explicit three-level difference scheme with complex non-self-conjugate operator is proposed. The stability of this scheme is investigated. The stability condition on initial data is obtained.