Проведен сравнительный анализ решений дискретных некорректных обратных задач, полученных в результате оцифровки интегрального уравнения (задача Carasso, Delves, Phillips). Использовались методы псевдообращения и регуляризации Тихонова и эти же методы с использованием дополнительного проецирования случайной матрицей. Исследована зависимость составляющих ошибки решения (смещение и дисперсия) от размерности матрицы проектора. При использовании проецирования, метод псевдообращения продемонстрировал точность на уровне регуляризации Тихонова.
Проведено порівняльний аналіз рішень дискретних некоректних зворотних задач, отриманих у результаті дискретизації інтегрального рівняння (задача Carasso, Delves, Phillips). Використовувалися методи псевдозвернення і регуляризації Тихонова і ці ж методи з використанням додаткового проектування випадковою матрицею. Досліджено залежність складових помилки рішення (зсув і дисперсія) від розмірності матриці проектора. При використанні проектування метод псевдозвернення продемонстрував точність на рівні регуляризації Тихонова.
A comparative analysis of discrete ill-posed inverse problems solutions obtained by discretization of the integral equation (Carasso, Delves, Phillips problems) has been performed. Pseudo-inverse and Tikhonov regularization methods were used. The same technique we used with additional projection by random matrix. The error partitioning into bias and variance was done. The dependence of the components of error solution (bias and variance) on the dimension of the projector matrix was studied. Pseudo-inverse method, when projecting, has shown the accuracy similarly to Tikhonov regularization.