Уравнения движения твердого тела, имеющего неподвижную точку, записаны в специальных осях с использованием параметров Родрига - Гамильтона. Рассмотрена задача построения решения этих уравнений, соответствующего решению Гесса. Поставленная задача сведена к дифференциальному уравнению второго порядка и в дальнейшем - к соотношениям, связывающим параметры Родрига - Гамильтона. Для случая нулевой постоянной интеграла площадей решение задачи выражено через эллиптические функции времени.
Рiвняння руху твердого тiла, що має нерухому точку, записано в спецiальних вiсях з використаннямпараметрiв Родрiга–Гамiльтона. Розглянуто задачу побудови розв’язку цих рiвнянь, який вiдповiдає розв’язку Гесса. Поставлену задачу зведено до диференцiального рiвняння другого степеня i надалi – до спiввiдношень, що зв’язують параметри Родрiга–Гамiльтона. Для випадку нульової постiйної iнтеграла площ розв’язок задачi виражено через елiптичнi функцiї часу.
The equations of motion for a rigid body with a fixed point are recorded in terms of the tensor components referred to some special basis using the Rodrigues–Hamilton parameters. The objective is to obtain a solution of these equations that corresponds to the Hess solution. The posed problem is reduced to the second-order differential equation and relations between the Rodrigues–Hamilton parameters. When the constant of the area integral is zero, the solution is expressed by elliptic functions.